Publication

A Neuro-Inspired Computational Model for a Visually Guided Robotic Lamprey Using Frame and Event Based Cameras

Résumé

The computational load associated with computer vision is often prohibitive, and limits the capacity for on-board image analysis in compact mobile robots. Replicating the kind of feature detection and neural processing that animals excel at remains a challenge in most biomimetic aquatic robots. Event-driven sensors use a biologically inspired sensing strategy to eliminate the need for complete frame capture. Systems employing event-driven cameras enjoy reduced latencies, power consumption, bandwidth, and benefit from a large dynamic range. However, to the best of our knowledge, no work has been done to evaluate the performance of these devices in underwater robotics. This work proposes a robotic lamprey design capable of supporting computer vision, and uses this system to validate a computational neuron model for driving anguilliform swimming. The robot is equipped with two different types of cameras: frame-based and event-based cameras. These were used to stimulate the neural network, yielding goal-oriented swimming. Finally, a study is conducted comparing the performance of the computational model when driven by the two different types of camera. It was observed that event-based cameras improved the accuracy of swimming trajectories and led to significant improvements in the rate at which visual inputs were processed by the network.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Neurosciences computationnelles
Les neurosciences computationnelles (NSC) sont un champ de recherche des neurosciences qui s'applique à découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale, c'est-à-dire des algorithmes génériques qui permettent de comprendre l'implémentation dans notre système nerveux central du traitement de l'information associé à nos fonctions cognitives. Ce but a été défini en premier lieu par David Marr dans une série d'articles fondateurs.
Professional video camera
A professional video camera (often called a television camera even though its use has spread beyond television) is a high-end device for creating electronic moving images (as opposed to a movie camera, that earlier recorded the images on film). Originally developed for use in television studios or with outside broadcast trucks, they are now also used for music videos, direct-to-video movies (see digital movie camera), corporate and educational videos, wedding videos, among other uses.
Appareil photographique numérique
Un appareil photographique numérique (ou APN) est un appareil photographique qui recueille la lumière sur un capteur photographique électronique, plutôt que sur une pellicule photographique, et qui convertit l'information reçue par ce support pour la coder numériquement. Un appareil photo numérique utilise un capteur CCD ou CMOS pour acquérir les images, et les enregistre habituellement sur des cartes mémoire (CompactFlash, SmartMedia, Memory Stick, Secure Digital, etc.).
Afficher plus
Publications associées (69)

Modeling Visual Impairments with Artificial Neural Networks: a Review

Martin Schrimpf

We present an approach to bridge the gap between the computational models of human vision and the clinical practice on visual impairments (VI). In a nutshell, we propose to connect advances in neuroscience and machine learning to study the impact of VI on ...
Los Alamitos2023

3D trigonal FAPbI(3)-based multilevel resistive switching nonvolatile memory for artificial neural synapse

Mohammad Khaja Nazeeruddin, Paul Joseph Dyson, Yong Ding, Li Tao, Yao Zhang, Jun Zhang, Bowen Jiang

Hybrid perovskites have attracted enormous attention in the next generation resistive switching (RS) memristor for the artificial synapses, owing to their ambipolar charge transport, long diffusion length, and tunable visible bandgap. However, the variable ...
WILEY2023

Leveraging Spiking Deep Neural Networks to Understand the Neural Mechanisms Underlying Selective Attention

Davide Zambrano

Spatial attention enhances sensory processing of goal-relevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different a ...
MIT PRESS2022
Afficher plus
MOOCs associés (32)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.