Théorie des catastrophesDans le domaine de la topologie différentielle, la théorie des catastrophes, fondée par René Thom, est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie, donnée empiriquement, ou un ensemble de phénomènes discontinus. Plus précisément, il s'agit d'étudier qualitativement comment les solutions d'équations dépendent du nombre de paramètres qu'elles contiennent. Le terme de « catastrophe » désigne le lieu où une fonction change brusquement de forme.
Expansion de l'Universdroite|redresse=1.2|vignette|L'expansion de l'Univers imagée par le gonflement d'un gâteau aux raisins. En cosmologie, l'expansion de l'Univers est le nom du phénomène qui voit à grande échelle les objets composant l'Univers (galaxies, amas...) s'éloigner les uns des autres. Cet écartement mutuel, que l'on pourrait prendre pour un mouvement des galaxies dans l'espace, s'interprète en réalité par un gonflement, une dilatation, de l'espace lui-même, les objets célestes étant de ce fait amenés à s'éloigner les uns des autres.
Calcul des constructionsLe calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence.
Fixed-point combinatorIn mathematics and computer science in general, a fixed point of a function is a value that is mapped to itself by the function. In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function that returns some fixed point of its argument function, if one exists. Formally, if the function f has one or more fixed points, then and hence, by repeated application, In the classical untyped lambda calculus, every function has a fixed point.