Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Demand Response (DR) is progressively moving from a centralized, unidirectional structure to a set of advanced decentralized mechanisms that better balance distributed supply and demand. This paper presents a decentralized cooperative DR framework to manage the daily energy exchanges within a community of Smart-Buildings, in the presence of local Renewable Energy Sources (RES). The proposed algorithm taps into the flexibility of the participants to let them decide of a day-ahead community power profile, and subsequently ensures the forecast tracking during the next day. In practice, the algorithm is fully decentralized by the Blockchain technology, that enables a trusted communication medium among the participants and enforces autonomous monitoring and billing via Smart-Contracts. With such an energy management framework, participating Smart-Buildings can together aim at a common objective, such as carbon-free resources usage or aggregated grid services, without depending on a centralized aggregator/utility. Simulations on realistic Swiss building models demonstrate that nearly all the renewable production resources could be harnessed locally through the presented framework, compared to selfish individual optimization. Under a quadratic cost of grid electricity, the considered community profile could dramatically be flattened, hence avoiding costly peaks at the grid interface. A scalability analysis shows that, considering the current public Ethereum Blockchain, the framework could handle a community size of up to 100 Smart-Buildings.
Rachid Guerraoui, Gauthier Jérôme Timothée Voron, Vincent Gramoli, Andrei Lebedev