NeigeLa neige () est une forme de précipitations atmosphériques constituée de particules de glace ramifiées, de structure et d'aspect très variables qui sont la plupart du temps cristallisées et agglomérées en flocons contenant de l'air. Mais cette glace peut aussi être sous forme de grains (neige en grains, neige roulée) ou mouillée. Lorsqu'il y a suffisamment de froid et d'humidité dans l'atmosphère, la neige se forme naturellement par condensation solide de la vapeur d'eau à saturation autour des noyaux de congélation.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Kappa de CohenEn statistique, la méthode du κ (kappa) mesure l’accord entre observateurs lors d'un codage qualitatif en catégories. L'article introduisant le κ a pour auteur Jacob Cohen – d'où sa désignation de κ de Cohen – et est paru dans le journal Educational and Psychological Measurement en 1960. Le κ est une mesure d'accord entre deux codeurs seulement. Pour une mesure de l'accord entre plus de deux codeurs, on utilise le κ de Fleiss (1981). Le calcul du κ se fait de la manière suivante : où Pr(a) est la proportion de l'accord entre codeurs et Pr(e) la probabilité d'un accord aléatoire.
Kappa de FleissKappa de Fleiss (nommé d'après Joseph L. Fleiss) est une mesure statistique qui évalue la concordance lors de l'assignation qualitative d'objets au sein de catégories pour un certain nombre d'observateurs. Cela contraste avec d'autres kappas tel que le Kappa de Cohen, qui ne fonctionne que pour évaluer la concordance entre deux observateurs. La mesure calcule le degré de concordance de la classification par rapport à ce qui pourrait être attendu si elle était faite au hasard.
F-scoreIn statistical analysis of binary classification, the F-score or F-measure is a measure of a test's accuracy. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all positive results, including those not identified correctly, and the recall is the number of true positive results divided by the number of all samples that should have been identified as positive.
Particule élémentaireEn physique des particules, une particule élémentaire, ou particule fondamentale, est une particule dont on ne connaît pas la composition : on ne sait pas si elle est constituée d'autres particules plus petites. Les particules élémentaires incluent les fermions fondamentaux (quarks, leptons, et leurs antiparticules, les antiquarks et les antileptons) qui composent la matière et l'antimatière, ainsi que des bosons (bosons de jauge et boson de Higgs) qui sont des vecteurs de forces et jouent un rôle de médiateur dans les interactions élémentaires entre les fermions.
Détecteur de particulesvignette|Photographie de rayonnements α détectés dans une chambre à brouillard. Un détecteur de particules est un appareil qui permet de détecter le passage d'une particule et, généralement, d'en déduire différentes caractéristiques (en fonction du type de détecteur) telles que sa masse, son énergie, son impulsion, son spin, ou encore sa charge électrique. Cavité de Faraday Chambre à brouillard Chambre à bulles Chambre à dérive Chambre à étincelles Chambre à fils Chambre d'ionisation Chambre à plaques paral
Compression d'imageLa compression d'image est une application de la compression de données sur des . Cette compression a pour utilité de réduire la redondance des données d'une image afin de pouvoir l'emmagasiner sans occuper beaucoup d'espace ou la transmettre rapidement. La compression d'image peut être effectuée avec perte de données ou sans perte. La compression sans perte est souvent préférée là où la netteté des traits est primordiale : schémas, dessins techniques, icônes, bandes dessinées.
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
ImageUne image est une représentation visuelle, voire mentale, de quelque chose (objet, être vivant ou concept). Elle peut être naturelle (ombre, reflet) ou artificielle (sculpture, peinture, photographie), visuelle ou non, tangible ou conceptuelle (métaphore), elle peut entretenir un rapport de ressemblance directe avec son modèle ou au contraire y être liée par un rapport plus symbolique. Pour la sémiologie ou sémiotique, qui a développé tout un secteur de sémiotique visuelle, l'image est conçue comme produite par un langage spécifique.