Quantum programmingQuantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment. Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor. With quantum processor based systems, quantum programming languages help express quantum algorithms using high-level constructs.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Suprématie quantiqueLa suprématie quantique, aussi appelée avantage quantique, désigne le nombre de qubits au-delà duquel plus aucun superordinateur classique n'est capable de gérer la croissance exponentielle de la mémoire et la bande passante de communication nécessaire pour simuler son équivalent quantique. Les superordinateurs de 2017 peuvent reproduire les résultats d'un ordinateur quantique de , mais à partir de cela devient physiquement impossible. Le seuil d'environ 50 qubits correspond à la limite théorique de la suprématie quantique.
Quantum algorithmIn quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer.
Problème SATvignette|Une instance du Sudoku peut être transformée en une formule de logique propositionnelle à satisfaire. Une assignation des variables propositionnelles donne une grille complétée. En informatique théorique, le problème SAT ou problème de satisfaisabilité booléenne est le problème de décision, qui, étant donné une formule de logique propositionnelle, détermine s'il existe une assignation des variables propositionnelles qui rend la formule vraie. Ce problème est important en théorie de la complexité.
Problème algorithmiqueUn problème algorithmique est, en informatique théorique, un objet mathématique qui représente une question ou un ensemble de questions auxquelles un ordinateur devrait être en mesure de répondre. Le plus souvent, ces problèmes sont de la forme : étant donné un objet (l'instance), effectuer une certaine action ou répondre à telle question. Par exemple, le problème de la factorisation est le problème suivant : étant donné un nombre entier, trouver un facteur premier de cet entier.
NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Trapped ion quantum computerA trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force).