Boltzmann machineA Boltzmann machine (also called Sherrington–Kirkpatrick model with external field or stochastic Ising–Lenz–Little model) is a stochastic spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, that is a stochastic Ising model. It is a statistical physics technique applied in the context of cognitive science. It is also classified as a Markov random field. Boltzmann machines are theoretically intriguing because of the locality and Hebbian nature of their training algorithm (being trained by Hebb's rule), and because of their parallelism and the resemblance of their dynamics to simple physical processes.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Verre de spinvignette|Représentation schématique d'une structure aléatoire d'un verre de spins (haut) et d'un état ferromagnétique (bas). Les verres de spin sont des alliages métalliques comportant un petit nombre d'impuretés magnétiques disposées au hasard dans l'alliage. À chaque impureté est associée un spin. Le couplage entre ces différents spins peut être plus ou moins intense - attractif ou répulsif - en fonction de la distance qui les sépare.
Link layerIn computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Order and disorderIn physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. In condensed matter physics, systems typically are ordered at low temperatures; upon heating, they undergo one or several phase transitions into less ordered states. Examples for such an order-disorder transition are: the melting of ice: solid-liquid transition, loss of crystalline order; the demagnetization of iron by heating above the Curie temperature: ferromagnetic-paramagnetic transition, loss of magnetic order.
Distribution de BoltzmannEn physique statistique, la distribution de Boltzmann prédit la fonction de distribution pour le nombre fractionnaire de particules Ni / N occupant un ensemble d'états i qui ont chacun pour énergie Ei : où est la constante de Boltzmann, T est la température (postulée comme étant définie très précisément), est la dégénérescence, ou le nombre d'états d'énergie , N est le nombre total de particules : et Z(T) est appelée fonction de partition, qui peut être considérée comme égale à : D'autre part, pour un systè
Potentiel thermodynamiqueEn thermodynamique, un potentiel thermodynamique est une fonction d'état particulière qui permet de prédire l'évolution et l'équilibre d'un système thermodynamique, et à partir de laquelle on peut déduire toutes les propriétés (comme les capacités thermiques, le coefficient de dilatation, le coefficient de compressibilité) du système à l'équilibre. Les divers potentiels thermodynamiques correspondent aux divers jeux de variables d'état utilisés dans l'étude des processus thermodynamiques.
Couche réseauLa couche de réseau est la troisième couche du modèle OSI. À ne pas confondre avec la couche « accès réseau » du modèle TCP/IP. thumb|Position de la couche réseau dans le modèle OSI et dans TCP-IP La couche réseau construit une voie de communication de bout à bout à partir de voies de communication avec ses voisins directs. Ses apports fonctionnels principaux sont donc: le routage détermination d'un chemin permettant de relier les 2 machines distantes; le relayage retransmission d'un PDU (Protocol Data Unit ou Unité de données de protocole) dont la destination n'est pas locale pour le rapprocher de sa destination finale.