Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing
Publications associées (38)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A macroscopic condition to simulate the interaction between an incompressible fluid flow and a permeable micro-structured rigid surface (i.e. a thin membrane) has been developed using multiscale homogenization and matching asymptotic expansions between the ...
CAMBRIDGE UNIV PRESS2020
Microbiology and biophysics are converging to advance our understanding of the mechanobiology of microorganisms. In this Review, Dufrene and Persat discuss the physical forces that bacteria experience in their natural environments and the structures that t ...
NATURE PUBLISHING GROUP2020
, ,
During chronic infections and in microbiota, bacteria predominantly colonize their hosts as multicellular structures called biofilms. A common assumption is that biofilms exclusively interact with their hosts biochemically. However, the contributions of me ...
2020
,
Understanding fluid flow in rough fractures is of high importance to large scale geologic processes and to most anthropogenic geo-energy activities. Here, we conducted fluid transport experiments on Carrara marble fractures with a novel customized surface ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
Enhanced Geothermal Systems represent a major field of study in the context of renewable energy resources. To create extractable energy from those reservoirs, a high enough fluid flow rate for production needs to be achieved. This fluid flow rate is direct ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
Microorganisms navigate and divide on surfaces to form multicellular structures called biofilms, the most widespread survival strategy found in the bacterial world. One common assumption is that cellular components guide the spatial architecture and arrang ...
Orbitally shaken bioreactors (OSRs) are commonly used for the cultivation of mammalian cells in suspension. Here we conducted a three-dimensional computational fluid dynamics (CFD) simulation to characterize the fluid field in the disposable 600-mL orbital ...
Biofilms are a most successful microbial lifestyle and prevail in a multitude of environmental and engineered settings. Understanding biofilm morphogenesis, that is the structural diversification of biofilms during community assembly, represents a remarkab ...