Publication

Dysarthric Speech Recognition with Lattice-Free MMI

Enno Hermann
2020
Article de conférence
Résumé

Recognising dysarthric speech is a challenging problem as it differs in many aspects from typical speech, such as speaking rate and pronunciation. In the literature the focus so far has largely been on handling these variabilities in the framework of HMM/GMM and cross-entropy based HMM/DNN systems. This paper focuses on the use of state-of-the-art sequence-discriminative training, in particular lattice-free maximum mutual information (LF-MMI), for improving dysarthric speech recognition. Through a systematic investigation on the Torgo corpus we demonstrate that LF-MMI performs well on such atypical data and compensates much better for the low speaking rates of dysarthric speakers than conventionally trained systems. This can be attributed to inherent aspects of current speech recognition training regimes, like frame subsampling and speed perturbation, which obviate the need for some techniques previously adopted specifically for dysarthric speech.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.