Low-latency speaker spotting with online diarization and detection
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper we introduce an open source and reproducible microphone array hardware design and an anechoic dataset recorded with this array. The Pyramic array has 48 microphones spread onto six identical modules connected to an FPGA-ARM combo. The arrange ...
Speaker verification systems traditionally extract and model cepstral features or filter bank energies from the speech signal. In this paper, inspired by the success of neural network-based approaches to model directly raw speech signal for applications su ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
Research in the area of automatic speaker verification (ASV) has advanced enough for the industry to start using ASV systems in practical applications. However, as it was also shown for fingerprints, face, and other verification systems, ASV systems are hi ...
In this paper, modified group delay (MODGD) features are used to model target speakers in the Total Variability Space (TVS) framework for speaker recognition. MODGD based features have been shown to improve speaker recognition performance owing to the abil ...
This Technical Report provides the deployment and evaluation guide of the IX dataplane operating system, as of its first open-source release on May 27, 2016. To facilitate the reproduction of our results, we include in this report the precise steps needed ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...