**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Secular effects of ultralight dark matter on binary pulsars

Résumé

Dark matter (DM) can consist of very light bosons behaving as a classical scalar field that experiences coherent oscillations. The presence of this DM field would perturb the dynamics of celestial bodies, either because the (oscillating) DM stress tensor modifies the gravitational potentials of the galaxy or if DM is directly coupled to the constituents of the body. We study secular variations of the orbital parameters of binary systems induced by such perturbations. Two classes of effects are identified. Effects of the first class appear if the frequency of DM oscillations is in resonance with the orbital motion; these exist for general DM couplings including the case of purely gravitational interaction. Effects of the second class arise if DM is coupled quadratically to the masses of the binary system members and do not require any resonant condition. The exquisite precision of binary pulsar timing can be used to constrain these effects. Current observations are not sensitive to oscillations in the galactic gravitational field, though a discovery of pulsars in regions of high DM density may improve the situation. For DM with direct coupling to ordinary matter, the current timing data are already competitive with other existing constraints in the range of DM masses similar to 10(-22)-10(-18) eV. Future observations are expected to increase the sensitivity and probe new regions of parameters.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (3)

Chargement

Chargement

Chargement

Concepts associés (20)

Matière noire

vignette|redresse=1.1|Répartition de la densité d'énergie de l'Univers après exploitation des premières données du satellite Planck. La matière noire en est une des composantes principales.
La matièr

Pulsar

thumb|Vue artistique d'un pulsar tirant de la matière d'une étoile proche.
Un pulsar est un objet astronomique produisant un signal périodique allant de l'ordre de la milliseconde à quelques dizaines

Matière

En physique, la matière est ce qui compose tout corps (objet ayant une réalité spatiale et massique). C'est-à-dire plus simplement une substance matérielle et donc occupe de l'esp

Diego Blas Temino, Sergey Sibiryakov

We consider the scenario where dark matter (DM) is represented by an ultralight classical scalar field performing coherent periodic oscillations. We point out that such DM perturbs the dynamics of binary systems either through its gravitational field or via direct coupling to ordinary matter. This perturbation gets resonantly amplified if the frequency of DM oscillations is close to a (half-) integer multiple of the orbital frequency of the system and leads to a secular variation of the orbital period. We suggest using binary pulsars as probes of this scenario and estimate their sensitivity. While the current accuracy of observations is not yet sufficient to probe the purely gravitational effect of DM, it already yields constraints on direct coupling that are competitive with other bounds. The sensitivity will increase with the upcoming radio observatories such as the Square Kilometer Array.

We study the general class of gravitational field theories constructed on the basis of scale invariance (and therefore absence of any mass parameters) and invariance under transverse diffeomorphisms, which are the 4-volume conserving coordinate transformations. We show that these theories are equivalent to a specific type of scalar-tensor theories of gravity (invariant under all diffeomorphisms) with a number of properties, making them phenomenologically interesting. They contain, in addition to the dimensionless coupling constants of the original theory, an arbitrary dimensionful parameter Lambda(0). This parameter is associated with an integration constant of the equations of motion, similar to the arbitrary cosmological constant appearing in unimodular gravity. We focus on the theories where Newton's constant and the electroweak scale emerge from the spontaneous breaking of scale invariance and are unrelated to Lambda(0). The massless particle spectrum of these theories contains the graviton and a new particle-dilaton. For Lambda(0) = 0, the massless dilaton has only derivative couplings to matter fields and the bounds on the existence of a 5th force are easily satisfied. As for the matter fields, we determine the conditions leading to a renormalizable low-energy theory. If Lambda(0) not equal 0, scale invariance is broken. The arbitrary constant Lambda(0) produces a "run-away" potential for the dilaton. As a consequence, the dilaton can act as a dynamical dark energy component. We elucidate the origin of the cosmological constant in the class of theories under consideration and formulate the condition leading to its absence. If this condition is satisfied, dark energy is purely dynamical and associated to the dilaton.

2011Currently, the best theoretical description of fundamental matter and its gravitational interaction is given by the Standard Model (SM) of particle physics and Einstein's theory of General Relativity (GR). These theories contain a number of seemingly unrelated scales. While Newton's gravitational constant and the mass of the Higgs boson are parameters in the classical action, the masses of other elementary particles are due to the electroweak symmetry breaking. Yet other scales, like ΛQCD associated to the strong interaction, only appear after the quantization of the theory. We reevaluate the idea that the fundamental theory of nature may contain no fixed scales and that all observed scales could have a common origin in the spontaneous break-down of exact scale invariance. To this end, we consider a few minimal scale-invariant extensions of GR and the SM, focusing especially on their cosmological phenomenology. In the simplest considered model, scale invariance is achieved through the introduction of a dilaton field. We find that for a large class of potentials, scale invariance is spontaneously broken, leading to induced scales at the classical level. The dilaton is exactly massless and practically decouples from all SM fields. The dynamical break-down of scale invariance automatically provides a mechanism for inflation. Despite exact scale invariance, the theory generally contains a cosmological constant, or, put in other words, flat spacetime need not be a solution. We next replace standard gravity by Unimodular Gravity (UG). This results in the appearance of an arbitrary integration constant in the equations of motion, inducing a run-away potential for the dilaton. As a consequence, the dilaton can play the role of a dynamical dark-energy component. The cosmological phenomenology of the model combining scale invariance and unimodular gravity is studied in detail. We find that the equation of state of the dilaton condensate has to be very close to the one of a cosmological constant. If the spacetime symmetry group of the gravitational action is reduced from the group of all diffeomorphisms (Diff) to the subgroup of transverse diffeomorphisms (TDiff), the metric in general contains a propagating scalar degree of freedom. We show that the replacement of Diff by TDiff makes it possible to construct a scale-invariant theory of gravity and particle physics in which the dilaton appears as a part of the metric. We find the conditions under which such a theory is a viable description of particle physics and in particular reproduces the SM phenomenology. The minimal theory with scale invariance and UG is found to be a particular case of a theory with scale and TDiff invariance. Moreover, cosmological solutions in models based on scale and TDiff invariance turn out to generically be similar to the solutions of the model with UG. In usual quantum field theories, scale invariance is anomalous. This might suggest that results based on classical scale invariance are necessarily spoiled by quantum corrections. We show that this conclusion is not true. Namely, we propose a new renormalization scheme which allows to construct a class of quantum field theories that are scale-invariant to all orders of perturbation theory and where the scale symmetry is spontaneously broken. In this type of theory, all scales, including those related to dimensional transmutation, like ΛQCD, appear as a consequence of the spontaneous break-down of the scale symmetry. The proposed theories are not renormalizable. Nonetheless, they are valid effective theories below a field-dependent cut-off scale. If the scale-invariant renormalization scheme is applied to the presented minimal scale-invariant extensions of GR and the SM, the goal of having a common origin of all scales, spontaneous breaking of scale invariance, is achieved.