Modeling of Quench Protection Concepts for Canted-Cosine-Theta Type High-Field Magnets
Publications associées (35)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of i ...
The scope of the Large Hadron Collider Hi-Lumi Project at CERN includes the installation of several superconducting magnets wound with Nb3Sn Rutherford cables. The quench level of these magnets (i.e. the maximum energy that a cable can tolerate without que ...
In a synchrotron accelerator, the beam trajectory is controlled thanks to magnets, where superconducting technology allows to generate very strong magnetic fields. This was a key element in the construction of the Large Hadron Collider (LHC), the world lar ...
In accelerator magnet design, important criteria are the magnetic field distribution and the magnetic field quality. Accelerator magnets are usually designed for the ideal case in which no magnetic material is present in the field region. In practice, howe ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
A new concept of polyimide electrical insulation for superconducting cables of accelerator magnets was developed in the last years. Its enhanced He II permeability allows a significant improvement of the heat extraction from the coil. This cable insulation ...
In this thesis, we present development of the first magnetic model of the main Proton Synchrotron magnets. The operation of the machine and conducting research on increasing its performance require a significant amount of the magnetic field data for the op ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A ...
The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Co ...