Multi-frequency Shubnikov-de Haas oscillations in topological semimetal Pt2HgSe3
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Two-dimensional transition metal dichalcogenides (TMDs) of Mo and W in their 1T' crystalline phase host the quantum spin Hall (QSH) insulator phase. We address the electronic properties of the QSH edge states by means of first-principles calculations perfo ...
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Two-dimensional (2D) materials have attracted increasing attention over the last decade owing to their remarkable mechanical, electrical and optical properties. Following the groundbreaking discovery of graphene, a plethora of other atomically-thin materia ...
Crystal phase engineering is an exciting pathway to enhance the properties of conventional semiconductors. Metastable SiGe presents a direct band gap well suited for optical devices whereas wurtzite (WZ) phosphide alloys enable efficient light emission in ...
Since their discovery, graphene and other 2D materials have become a subject of intense research in condensed matter physics. Especially the vast possibilities of combining those materials into heterostructures are promising for the discovery of novel phys ...
We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity rho(xx)(T,H), Hall resistivity rho(xy)(T,H), and quantum oscillations of the magnetization as a function of temperature at var ...
Topological semimetals are frequently discussed as materials platforms for future electronics that exploit the remarkable properties of their quasiparticles. These ideas are mostly based on dispersion relations that mimic relativistic particles, such as We ...
Dirac degeneracies are essential ingredients to control topological charge exchanges between bands and trigger the unique edge transport properties of topological materials. In addition, when Dirac cones are tilted, exotic phenomena can emerge such as anom ...
Recently, nonreciprocal two-dimensional unitary scattering networks have gained considerable interest due to the possibility of obtaining robust edge wave propagation in their anomalous topological insulating phase. However, zero-dimensional states in such ...
We propose Landau levels as a probe for the topological character of electronic bands in two-dimensional moire superlattices. We consider two configurations of twisted double bilayer graphene (TDBG) that have very similar band structures, but show differen ...