Controlling oscillations in high-order Discontinuous Galerkin schemes using artificial viscosity tuned by neural networks
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to impro ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions ...
In this paper, we consider the numerical approximation of high order Partial Differential Equations (PDEs) by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which global smooth basis functions with degree of c ...
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by ...
The fractional Laplacian operator (−∆)s on a bounded domain Ω can be realized as a Dirichlet-to-Neumann map for a degenerate elliptic equation posed in the semi-infinite cylinder Ω × (0,∞). In fact, the Neumann trace on Ω involves a Muckenhoupt weight that ...
Mathematical models involving partial differential equations (PDE) arise in numerous applications ranging from Natural Sciences and Engineering to Economics. Random and stochastic PDE models become very powerful (and sometimes unavoidable) extensions of de ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
This study presents a numerical approach designed for material parameter identification for the coupled hydro-mechanical boundary value problem (BVP) of the piezocone test (CPTU) in normally and lightly overconsolidated clayey soils. The study is presented ...