Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Sélection naturellevignette|Selon les principes de la sélection naturelle de Darwin, les pinsons des Galápagos sont issus d'une espèce souche venue du continent. La sélection s'est traduite par une spécialisation de la taille de leur bec en liaison avec leur régime alimentaire (seconde édition de son la publiée en 1845). En biologie, la est l'un des mécanismes moteurs de l'évolution des espèces qui explique le succès reproductif différentiel entre des individus d'une même espèce et le succès différentiel des gènes présents dans une population.
Expanded genetic codeAn expanded genetic code is an artificially modified genetic code in which one or more specific codons have been re-allocated to encode an amino acid that is not among the 22 common naturally-encoded proteinogenic amino acids. The key prerequisites to expand the genetic code are: the non-standard amino acid to encode, an unused codon to adopt, a tRNA that recognises this codon, and a tRNA synthetase that recognises only that tRNA and only the non-standard amino acid.
Sélection stabilisatriceEn génétique des populations, la sélection stabilisatrice ou stabilisante (à ne pas confondre avec la sélection négative ou purificatrice) est un mode de sélection naturelle dans laquelle la moyenne de la population se stabilise sur une valeur de trait non extrême particulière. On pense que c'est le mécanisme d'action le plus courant pour la sélection naturelle car la plupart des traits ne semblent pas changer radicalement au cours du temps.
Directional selectionIn population genetics, directional selection, is a mode of negative natural selection in which an extreme phenotype is favored over other phenotypes, causing the allele frequency to shift over time in the direction of that phenotype. Under directional selection, the advantageous allele increases as a consequence of differences in survival and reproduction among different phenotypes. The increases are independent of the dominance of the allele, and even if the allele is recessive, it will eventually become fixed.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Sélection négative (sélection naturelle)Dans la sélection naturelle, la sélection négative ou la sélection purifiante est l'élimination sélective des allèles délétères. Cela peut stabiliser la sélection par la purge des polymorphismes génétiques délétères qui résultent de mutations aléatoires. La purge des allèles délétères peut être réalisée au niveau de la génétique des populations, ne nécessitant pas plus d'une seule mutation ponctuelle comme l'unité de sélection.