On quantifying the quality of acoustic models in hybrid DNN-HMM ASR
Publications associées (86)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Using phone posterior probabilities has been increasingly explored for improving automatic speech recognition (ASR) systems. In this paper, we propose two approaches for hierarchically enhancing these phone posteriors, by integrating long acoustic context, ...
We propose a non-linear graphical model for structured prediction. It combines the power of deep neural networks to extract high level features with the graphical framework of Markov networks, yielding a powerful and scalable probabilistic model that we ap ...
In this paper, we investigate the significance of contextual information in a phoneme recognition system using the hidden Markov model - artificial neural network paradigm. Contextual information is probed at the feature level as well as at the output of t ...
This report presents one month trainee work on development of French Automatic Speech Recognition ASR system using a french part of multilingual database GlobalPhone_FR. The purpose of this report is to explain and give results of the training and testing ...
This paper studies the price of an asset depending on both a fundamental and possible interventions of an authority. Using the martingale approach in continuous time, we provide closed-form solutions to switching problems involving irreversible, state depe ...
Contextual information is important for sequence modeling. Hidden Markov Models (HMMs) and extensions, which have been widely used for sequence modeling, make simplifying, often unrealistic assumptions on the conditional independence of observations given ...
In this paper, we investigate the significance of contextual information in a phoneme recognition system using the hidden Markov model - artificial neural network paradigm. Contextual information is probed at the feature level as well as at the output of t ...
In this work we analyze and combine evidences from different classifiers for phoneme recognition using information from the confusion matrices. Speech signals are processed to extract the Perceptual Linear Prediction (PLP) and Multi-RASTA (MRASTA) features ...
Contextual information is important for sequence modeling. Hidden Markov Models (HMMs) and extensions, which have been widely used for sequence modeling, make simplifying, often unrealistic assumptions on the conditional independence of observations given ...
Speaker recognition systems achieve acceptable performance in controlled laboratory conditions. However, in real-life environments, the performance of a speaker recognition system degrades drastically, the principal cause being the mismatch that exists bet ...