Unsupervised Scalable Representation Learning for Multivariate Time Series
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Training convolutional neural networks (CNNs) for very high-resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor-intensive and time-consuming to produce. Moreover, professional photograph interpreter ...
Incomplete labels are common in multi-task learning for biomedical applications due to several practical difficulties, e.g., expensive annotation efforts by experts, limit of data collection, different sources of data. A naive approach to enable joint lear ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...
In this thesis, we reveal that supervised learning and inverse problems share similar mathematical foundations. Consequently, we are able to present a unified variational view of these tasks that we formulate as optimization problems posed over infinite-di ...
This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum- ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...