On the Experimental Transferability of Spectral Graph Convolutional Networks
Publications associées (49)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
Joint localization of graph signals in vertex and spectral domain is achieved in Slepian vectors calculated by either maximizing energy concentration (mu) or minimizing modified embedded distance (xi) in the subgraph of interest. On the other hand, graph L ...
The emerging field of graph signal processing (GSP) allows one to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role in studying ...
Graph processing systems are used in a wide variety of fields, ranging from biology to social networks.
Algorithms to mine graphs incur many random accesses, and the sparse nature of the graphs of interest, exacerbates this. As DRAM sustains high bandwidt ...
EPFL2019
In several machine learning tasks for graph structured data, the graphs under consideration may be composed of a varying number of nodes. Therefore, it is necessary to design pooling methods that aggregate the graph representations of varying size to repre ...
2021
In graph coarsening, one aims to produce a coarse graph of reduced size while preserving important graph properties. However, as there is no consensus on which specific graph properties should be preserved by coarse graphs, measuring the differences betwee ...
ADDISON-WESLEY PUBL CO2020
, ,
Network data appears in very diverse applications, like biological, social, or sensor networks. Clustering of network nodes into categories or communities has thus become a very common task in machine learning and data mining. Network data comes with some ...
We present a novel framework based on optimal transport for the challenging problem of comparing graphs. Specifically, we exploit the probabilistic distribution of smooth graph signals defined with respect to the graph topology. This allows us to derive an ...
Non-fungible tokens (NFTs) as a decentralized proof of ownership represent one of the main reasons why Ethereum is a disruptive technology. This paper presents the first systematic study of the interactions occurring in a number of NFT ecosystems. We illus ...