Privacy-preserving and Personalized Federated Machine Learning for Medical Data
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis, we explore the application of data mining and machine learning techniques to several practical problems. These problems have roots in various fields such as social science, economics, and political science. We show that computer science tec ...
We consider MapReduce workloads that are produced by analytics applications. In contrast to ad hoc query workloads, analytics applications are comprised of fixed data flows that are run over newly arriving data sets or on different portions of an existing ...
A common trend in machine learning and pattern classification research is the exploitation of massive amounts of information in order to achieve an increase in performance. In particular, learning from huge collections of data obtained from the web, and us ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of al1 this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
Learning about users’ utilities from preference, discrete choice or implicit feedback data is of integral importance in e-commerce, targeted advertising and web search. Due to the sparsity and diffuse nature of data, Bayesian approaches hold much promise, ...
We present a new approach to address the problem of large sequence mining from big data. The particular problem of interest is the effective mining of long sequences from large-scale location data to be practical for Reality Mining applications, which suff ...
In the "missing data" (MD) approach to noise robust automatic speech recognition (ASR), speech models are trained on clean data, and during recognition sections of spectral data dominated by noise are detected and treated as "missing". However, this all-or ...
A common trend in machine learning and pattern classification research is the exploitation of massive amounts of information in order to achieve an increase in performance. In particular, learning from huge collections of data obtained from the web, and us ...
In the "missing data" (MD) approach to noise robust automatic speech recognition (ASR), speech models are trained on clean data, and during recognition sections of spectral data dominated by noise are detected and treated as "missing". However, this all-or ...
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propos ...