Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct model ...
Graphs are extensively used to represent networked data. In many applications, especially when considering large datasets, it is a desirable feature to focus the analysis onto specific subgraphs of interest. Slepian theory and its extension to graphs allow ...
In this paper we study stationary graphs for functionals of geometric nature defined on currents or varifolds. The point of view we adopt is the one of differential inclusions, introduced in this context in the recent papers (De Lellis et al. in Geometric ...
Graph neural networks take node features and graph structure as input to build representations for nodes and graphs. While there are a lot of focus on GNN models, understanding the impact of node features and graph structure to GNN performance has received ...
Given a graph H and a set of graphs F, let ex(n, H, F) denote the maximum possible number of copies of H in an T-free graph on n vertices. We investigate the function ex(n, H, F), when H and members of F are cycles. Let C-k denote the cycle of length k and ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
In this note, we improve on results of Hoppen, Kohayakawa and Lefmann about the maximum number of edge colorings without monochromatic copies of a star of a fixed size that a graph on n vertices may admit. Our results rely on an improved application of an ...