Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This work shows the feasibility of fully Fused-Deposition-Modeling (FDM) printed capacitive and resistive transducers, processed in a single tool. It enables their cost-effective processing and provides a simple approach for sensors manufacturing in 3D printed constructions. By printing FDM electrically conductive and dielectric filaments, resistive thermal and capacitive force transducers were fabricated. Fully FDM flexible printed capacitive force sensors were implemented with parallel plate structures, obtaining a relative sensitivity of 0.088 %/N. Fully FDM flexible printed resistive sensors are used as thermal transducers exhibiting a relative sensitivity of 2.2%/ degrees C. Both transducers, resistive and capacitive, were demonstrated as touch sensors. This technology has potential applications in the fields of electronic skin, smart wearables and soft robotics.
Sandro Carrara, Andromachi Tsirou, Amar Kapic
Herbert Shea, Amir Firouzeh, Ayana Mizutani
Josephine Anna Eleanor Hughes, Kai Christian Junge, Antonia Georgopoulou Papadonikolaki