Exploring Neural Network Models for the Classification of Students in Highly Interactive Environments
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Artificial intelligence (AI) and machine learning (ML) have become de facto tools in many real-life applications to offer a wide range of benefits for individuals and our society. A classic ML model is typically trained with a large-scale static dataset in ...
Anomaly Detection systems based on Machine and Deep learning are the most promising solutions to detect cyberattacks in the industry. However, these techniques are vulnerable to adversarial attacks that downgrade prediction performance. Several techniques ...
With improved insulation of building envelopes and the use of low-temperature space heating systems, the share of energy use for domestic hot water (DHW) production in buildings has increased significantly, and nearly become the most energy-expensive servi ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
In a typical fusion experiment, the plasma can have several possible confinement modes. At the tokamak a configuration variable, aside from the low (L) and high (H) confinement modes, an additional mode, dithering (D), is frequently observed. Developing me ...
Advances in soft sensors coupled with machine learning are enabling increasingly capable wearable systems. Since hand motion in particular can convey useful information for developing intuitive interfaces, glove-based systems can have a significant impact ...
Institute of Electrical and Electronics Engineers Inc.2022
The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity distribution function f(upsilon(perpendicular to)) of the fast ions triggering the ICE is modeled using a two-layer deep neural network. The network ...
We propose to leverage Transformer architectures for non-autoregressive human motion prediction. Our approach decodes elements in parallel from a query sequence, instead of conditioning on previous predictions such as in state-of-the-art RNN-based approach ...
Variants of deep networks have been widely used for hyperspectral image (HSI)-classification tasks. Among them, in recent years, recurrent neural networks (RNNs) have attracted considerable attention in the remote sensing community. However, complex geomet ...
This work proposes a new way of combining independently trained classifiers over space and time. Combination over space means that the outputs of spatially distributed classifiers are aggregated. Combination over time means that the classifiers respond to ...