Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Recent advances in transfer learning and few-shot learning largely rely on annotated data related to the goal task during (pre-)training. However, collecting sufficiently similar and annotated data is often infeasible. Building on advances in self-supervised and few-shot learning, we propose to learn a metric embedding that clusters unlabeled samples and their augmentations closely together. This pre-trained embedding serves as a starting point for classification with limited labeled goal task data by summarizing class clusters and fine-tuning. Experiments show that our approach significantly outperforms state-of the-art unsupervised meta-learning approaches, and is on par with supervised performance. In a cross-domain setting, our approach is competitive with its classical fully supervised counterpart.
, , ,