Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Image numériqueL'appellation d'image numérique désigne toute (dessin, icône, photographie...) acquise, créée, traitée et stockée sous forme binaire : acquise par des convertisseurs analogique-numérique situés dans des dispositifs comme les scanners, les appareils photo ou les caméscopes numériques, les cartes d’acquisition vidéo (qui numérisent directement une source comme la télévision) créée directement par des programmes informatiques, grâce à une souris, des tablettes graphiques ou par de la modélisation 3D (ce que l’on appelle, par abus de langage, les « images de synthèse ») ; traitée grâce à des outils graphiques, de façon à la transformer, à en modifier la taille, les couleurs, d’y ajouter ou d'en supprimer des éléments, d’y appliquer des filtres variés stockée sur un support informatique (clé USB, SSD, disque dur, CD-ROM.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Retouche numériqueImage editing encompasses the processes of altering s, whether they are digital photographs, traditional photo-chemical photographs, or illustrations. Traditional analog image editing is known as photo retouching, using tools such as an airbrush to modify photographs or editing illustrations with any traditional art medium. Graphic software programs, which can be broadly grouped into vector graphics editors, raster graphics editors, and 3D modelers, are the primary tools with which a user may manipulate, enhance, and transform images.
Photographie numériqueLa photographie numérique recouvre l'ensemble des techniques permettant l'obtention d'une photographie via l'utilisation d'un capteur électronique comme surface photosensible, ainsi que les techniques de traitement et de diffusion qui en découlent. On l'oppose à la photographie argentique. Appareil photographique numérique Les systèmes optiques (objectif, viseur optique, chambre reflex), de ces appareils sont voisins des solutions argentiques.
Redimensionnement d'imageLe redimensionnement, ou la mise à l'échelle, est une transformation applicable à une qui consiste à en modifier la taille, que ce soit pour l'agrandir ou pour la rétrécir, comme le ferait un zoom. Le redimensionnement existe aussi bien pour les , où il n'implique aucune perte de qualité, que pour les , où il est moins trivial et entraîne des effets indésirables et une perte de qualité. La méthode la plus simple pour réduire la résolution d'une image est de la sous-échantillonner.
Bayer filterA Bayer filter mosaic is a color filter array (CFA) for arranging RGB color filters on a square grid of photosensors. Its particular arrangement of color filters is used in most single-chip digital s used in digital cameras, camcorders, and scanners to create a color image. The filter pattern is half green, one quarter red and one quarter blue, hence is also called BGGR, RGBG, GRBG, or RGGB. It is named after its inventor, Bryce Bayer of Eastman Kodak. Bayer is also known for his recursively defined matrix used in ordered dithering.
Highway networkIn machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous artificial neural networks. It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by Long Short-Term Memory (LSTM) recurrent neural networks. The advantage of a Highway Network over the common deep neural networks is that it solves or partially prevents the vanishing gradient problem, thus leading to easier to optimize neural networks.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Deep image priorDeep image prior is a type of convolutional neural network used to enhance a given image with no prior training data other than the image itself. A neural network is randomly initialized and used as prior to solve inverse problems such as noise reduction, super-resolution, and inpainting. Image statistics are captured by the structure of a convolutional image generator rather than by any previously learned capabilities.