Publication

Density-dependent solute transport in a layered hyporheic zone

Résumé

Hyporheic exchange is affected by bedform geometry, which induces complex flow paths within the bedform. Additional factors that influence flow and solute transport in the hyporheic zone are layered profile sediments and density-driven flow. This study explored the combined effects of these factors on hyporheic exchange through laboratory experiments and numerical simulations involving infiltrating solute displacing less-dense resident water in a layered bedform with a low permeability layer (LPL). The bedform consisted of three horizontal layers, in which the hydraulic conductivity of the middle layer (LPL) was less than that of the top (TL) and bottom layers (BL). The results demonstrated that a previously unexplored combination of mechanisms (density effects and layered bedform) produces irregular spatial patterns of solute transport in the hyporheic zone. For instance, the width of solute plume within the bottom layers becomes narrowed compared with tracer transport. With increasing density contrast between infiltrating solute and resident water, the solute plume becomes much narrower, forming fingers. Numerical modeling further shows that the hydraulic conductivity contrast (HCC) and relative thickness (RT) of the hyporheic zone layers also affect the spatial solute transport patterns. As the hydraulic conductivity contrast or relative thickness increases, the plume becomes much narrower. Horizontal ambient flow (HAF) dominated in the bottom layers, and lateral solute spreading and mixing intensified with a higher hydraulic conductivity contrast and relative thickness. Furthermore, the vertical solute plume was detached by the horizontal ambient flow in the bottom layers with a discontinuous low permeability layer, forming a discontinuous zone of vertical solute transport.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Compartiment sous-fluvial
vignette|Coupe schématique de la zone du compartiment sous-fluvial Dans le domaine de l'hydrographie, de l'hydrobiologie, de l'hydroécologie et de l'écologie souterraine, la notion de Compartiment sous-fluvial désigne le compartiment du fleuve (ou de la rivière) qui est invisible mais présent dans l'épaisseur du substrat sous-jacent ou adjacent quand celui-ci est poreux (volume sédimentaire) ou karstique et constitue un habitat permanent ou intermittent pour des espèces (appartenant à la stygofaune, qui comp
Conductivité hydraulique
La conductivité hydraulique, généralement notée K, est une grandeur qui exprime l'aptitude d'un milieu poreux à laisser passer un fluide sous l'effet d'un gradient de pression. Dans le Système international d'unités elle s'exprime en mètres par seconde (m/s). La conductivité hydraulique est une grandeur qui dépend à la fois des propriétés du milieu poreux où l’écoulement a lieu (granulométrie, forme des grains, répartition et forme des pores, porosité intergranulaire), des propriétés du fluide qui s'écoule (viscosité, densité) et du degré de saturation du milieu poreux.
Bioturbation
vignette|redresse=1.7|Schéma présentant la diversité des espèces benthiques et notamment des organismes bioturbateurs (6) qui ont un impact sur le type et l'intensité du remaniement sédimentaire et de la . La bioturbation désigne le réarrangement physique du matériel pédologique et des sédiments, et le transfert d'éléments nutritifs ou chimiques de ces substrats, par le mouvement d'organismes vivants (dits bioturbateurs) au niveau du sol (pédoturbation) ou des fonds marins (bioturbation benthique).
Afficher plus
Publications associées (33)

Clogging of riverbed substrates by fine sediment

Romain Maxime Dubuis

Riverbeds represent the habitat of numerous aquatic species. Exchanges between the groundwater, the hyporheic zone and the surface flow are also essential for river ecosystems. Fine sediment transported by rivers deposits inside or on top of the bed and mo ...
EPFL2023

Ultrasonic sediment flux profiling with ACVP Technology: application to sediment-laden Boundary Layer flows

Giovanni De Cesare, David Hurther

Sediment transport in geophysical boundary layer flows has relevance to a broad spectrum of sciences ranging from the physical and chemical, to the biological, ecological and geological. Advances in sediment transport modelling and prediction strongly suff ...
2023

Ecosystem engineering by periphyton in Alpine proglacial streams

Tom Ian Battin, Davide Mancini, Marc Aguet, Adrijan Selitaj, Matteo Roncoroni

Stream periphytons are candidate ecosystem engineers in proglacial margins. Here, we quantify the extent to which they are engineers for the case of hillslope-fed tributaries in the terrace zones of proglacial margin alluvial plains. Candidate ecosystem en ...
WILEY2023
Afficher plus
MOOCs associés (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.