Disruption Prediction Approaches Using Machine Learning Tools in Tokamaks
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasm ...
Bristol2023
, , ,
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in t ...
JET experiments using the fuel mixture envisaged for fusion power plants, deuterium and tritium (D-T), provide a unique opportunity to validate existing D-T fusion power prediction capabilities in support of future device design and operation preparation. ...
This research explores the potential of multimodal fusion for the differential diagnosis of early-stage lung adenocarcinoma (LUAD) (tumor sizes < 2 cm). It combines liquid biopsy biomarkers, specifically extracellular vesicle long RNA (evlRNA) and the comp ...
The European Roadmap to Fusion Electricity (Federici et al., 2018) [1] details the path to complete within the next three decades the DEMOnstration power plant, DEMO, aiming to a net gain of Energy Q=40. The 2018 DEMO baseline considers a 2 GW tokamak devi ...
Combined high-fusion performance and long-pulse operation is one of the key integration challenges for fusion energy development in magnetic devices. Addressing these challenges requires an integrated vision of physics and engineering aspects with the purp ...
In magnetic fusion devices, error field (EF) sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies hav ...
Phase contrast imaging (PCI) is an established and powerful technique for measuring density fluctuations in plasmas and has been successfully applied to several fusion devices. Rooted in a concept first developed for microscopy, PCI belongs to the category ...
Fusion occurs when light nuclei combine to form heavier nuclei. The energy released in this process powers the stars and can provide humankind with a safe, sustainable, and clean source of baseload electricity, a valuable tool in the fight against climate ...