Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
SuperlentilleUne superlentille est une lentille optique élaborée avec des métamatériaux et permettant de distinguer des détails jusqu'à vingt fois inférieurs à la longueur d'onde d'utilisation. Une lentille classique est dite « limitée par la diffraction », c'est-à-dire que l'image la plus petite que l'on pourra obtenir sera toujours une tache d'Airy et donc possède un diamètre dépendant du diamètre de la lentille et de la longueur d'onde d'utilisation, limitant l'utilisation de lentilles classiques en verre optique à l'observation d'objet de quelques centaines de nanomètres.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
MétamatériauEn physique, en électromagnétisme, le terme métamatériau désigne un matériau composite artificiel qui présente des propriétés électromagnétiques qu'on ne retrouve pas dans un matériau naturel. Il s'agit en général de structures périodiques, diélectriques ou métalliques, qui se comportent comme un matériau homogène n'existant pas à l'état naturel. Il existe plusieurs types de métamatériaux en électromagnétisme, les plus connus étant ceux susceptibles de présenter à la fois une permittivité et une perméabilité négatives.
Métamatériaux acoustiquesLes métamatériaux acoustiques sont des matériaux artificiels développés pour contrôler et manipuler les ondes acoustiques pouvant se propager dans des gaz, des liquides ou des solides. Initialement, ce domaine d'étude provient de la recherche de matériaux à indice de réfraction négatifs. Le contrôle des différentes formes d'ondes acoustiques ainsi générées est principalement réalisé grâce au contrôle du module d'élasticité β, de la densité ρ, ou de la .
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Microscope optique en champ procheLe microscope optique en champ proche (MOCP, ou SNOM pour scanning near-field optical microscope ou NSOM pour near-field scanning optical microscopy) ou microscope optique à sonde locale (MOSL) est un type de microscope à sonde locale qui permet d'imager des objets à partir de la détection des ondes évanescentes confinées au voisinage de leur surface (détection en champ proche optique). Le MOCP permet de compenser la diffraction, une des limitations de la microscopie optique.
Photonic metamaterialA photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure. The subwavelength periodicity distinguishes photonic metamaterials from photonic band gap or photonic crystal structures. The cells are on a scale that is magnitudes larger than the atom, yet much smaller than the radiated wavelength, are on the order of nanometers.