Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Factor graphA factor graph is a bipartite graph representing the factorization of a function. In probability theory and its applications, factor graphs are used to represent factorization of a probability distribution function, enabling efficient computations, such as the computation of marginal distributions through the sum-product algorithm. One of the important success stories of factor graphs and the sum-product algorithm is the decoding of capacity-approaching error-correcting codes, such as LDPC and turbo codes.
Turbo codeTurbo code est le nom générique d'un code correcteur imaginé dans les années 1990, qui permet de s'approcher aussi près qu'on le souhaite de la limite de Shannon. Les turbo codes représentent une percée majeure dans le domaine des communications numériques. Ils sont utilisés dans de nombreux standards de téléphonie mobile (UMTS, LTE), de communications par satellites (Inmarsat, DVB-RCS) ou de courants porteurs en ligne. Leur inventeur est Claude Berrou qui breveta cette technologie pour le compte de France Télécom et TDF.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
TélécommunicationsLes télécommunications sont définies comme la transmission d’informations à distance en utilisant des technologies électronique, informatique, de transmission filaire, optique ou électromagnétique. Ce terme a un sens plus large que son acception équivalente officielle « communication électronique ». Elles se distinguent ainsi de la poste qui transmet des informations ou des objets sous forme physique.
Modèle graphiqueUn modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires. Ces modèles sont notamment utilisés en apprentissage automatique. Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D.
Transmission sans filLa transmission sans fil est un mode de communication à distance utilisant des ondes électromagnétiques modulées comme vecteur. Avec celles-ci, les distances peuvent être courtes , voire correspondre à des millions de kilomètres pour le réseau de communications avec l'espace lointain de la NASA. Dans le domaine grand-public, les applications les plus courantes des transmissions sans fil incluent les téléphones portables, les GPS, les souris et les claviers d’ordinateur, les réseaux Wi-Fi, les réseaux mobiles (les WAN sans fil), les casques audio, les récepteurs radio et la télévision numérique terrestre et par satellite.