Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Mechanistic modeling of signaling pathways mediating patient-specific response to therapy can help to unveil resistance mecha-nisms and improve therapeutic strategies. Yet, creating suchmodels for patients, in particular for solid malignancies, is chal-lenging. A major hurdle to build these models is the limited mate-rial available that precludes the generation of large-scaleperturbation data. Here, we present an approach that couplesex vivohigh-throughput screenings of cancer biopsies usingmicrofluidics with logic-based modeling to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis signal-ing pathways. We used the resulting models to investigate hetero-geneity in pancreatic cancer patients, showing dissimilaritiesespecially in the PI3K-Akt pathway. Variation in model parametersreflected well the different tumor stages. Finally, we used ourdynamic models to efficaciously predict new personalized combi-natorial treatments. Our results suggest that our combination ofmicrofluidic experiments and mathematical model can be a noveltool toward cancer precision medicine.