Nonlinear states and dynamics in a synthetic frequency dimension
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Providing an additional degree of freedom for binary information encoding and nonreciprocal information transmission, chiral single photons have become a new research frontier in quantum optics. Without using complex external conditions (e.g., magnetic fie ...
Since the discovery of dissipative Kerr solitons in optical microresonators, significant progress has been made in the understanding of the underlying physical principles from the fundamental side and generation of broadband coherent optical Kerr frequency ...
Nonlinear optical frequency conversion is one of the driving research areas in photonics. Its quasi instantaneous response and the promise of low power consumption in integrated structures could cover the demand for fast signal processing with minimal ener ...
Eigenmodes are central to the study of resonant phenomena in all areas of physics.
However, their use in nano-optics seems to have been hindered and delayed for various
reasons. First, due to their small size, the response of nanostructures to a far-field
...
Magnetic resonance imaging is widely used in medical diagnosis to obtain anatomical details of the human body in a non-invasive way. Clinical MR scanners typically operate at a static magnetic field strength (B0) of 1.5T or 3T. However, going to higher fie ...
Optical soliton molecules are bound states of solitons that arise from the balance between attractive and repulsive effects. Having been observed in systems ranging from optical fibres to mode-locked lasers, they provide insights into the fundamental inter ...
We propose a mechanism to engineer an n-photon blockade in a nonlinear cavity with an n-photon parametric drive lambda(adagger n + an). When an n-photon-excitation resonance condition is satisfied, the presence of n photons in the cavity suppress ...
Vortex-carrying matter waves, such as chiral electron beams, are of significant interest in both applied and fundamental science. Continuous-wave electron vortex beams are commonly prepared via passive phase masks imprinting a transverse phase modulation o ...
One of the challenges of minimally invasive surgery is the dexterous manipulation and precise control of small diameter continuum surgical instruments. In this paper, a magnetic continuum device with variable stiffness (VS) is presented, whose tip can be p ...
We proposed and showed strongly orientation-controlled Forster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquidair interface self-assembly technique specific to depositing a complete ...