**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Reconstruction Methods for Cryo-Electron Microscopy: From Model-based to Data-driven

Résumé

The topic of this thesis is the development of new reconstruction methods for cryo-electron microscopy (cryo-EM). Cryo-EM has revolutionized the field of structural biology over the last decade and now permits the regular discovery of biostructures. Yet, the technical challenges associated to cryo-EM are still numerous, and the measurements remain notoriously difficult to process. This calls for fast and robust algorithms that can reliably handle the challenging reconstruction task at hand.

In this thesis, we investigated two reconstruction paradigms: model-based and data-driven. Model-based methods formulate the reconstruction task as an inverse problem and rely on a faithful model of the acquisition physics. By contrast, the central philosophy of data-driven approaches is to let the reconstruction algorithm be guided by the measured data through some learning procedure. Both paradigms share a tight link in all our works: their reliance on a rigorous mathematical formulation of the cryo-EM imaging model.

The first cryo-EM method we considered is scanning transmission electron tomography (STET), a modality whose primary concern is to reduce the electron dosage required for accurate imaging. To handle this, we developed a tailored acquisition-reconstruction STET framework that relies on the principles of compressed sensing. This scheme permits high-quality reconstruction from a reduced number of measurements, hence greatly preserving the sample.

We then designed several reconstruction algorithms for single-particle analysis (SPA), a popular cryo-EM method that enables the determination of structures at near-atomic resolution. A key challenge for the deployment of robust, iterative reconstruction methods in SPA is that they usually come with a prohibitive computational cost if not carefully engineered. To circumvent this problem, we developed a regularized reconstruction scheme whose cost-dominant operation is recast as a discrete convolution, which makes the use of our robust scheme feasible in SPA. Building on this development, we devised a joint optimization framework that efficiently alternates between the reconstruction and the estimation of the unknown orientations.

We then explored a learning-based method to estimate the unknown orientations in SPA directly from the acquired dataset of projections. Capitalizing on our ability to model the cryo-EM procedure, we generated large synthetic SPA datasets to train a function---parametrized as a neural network---to predict the relative orientation between two projections based on their similarity. The framework relies on the postulate that it is possible to recover, from these estimated orientation distances, the orientations themselves through an appropriate minimization scheme, as supported by preliminary tests.

Finally, we developed a completely new paradigm for SPA reconstruction that leverages the remarkable capability of deep neural networks to capture data distribution. The proposed algorithm uses a generative adversarial network to learn the 3D structure that has simulated projections that most closely match the real data in a distributional sense. By doing so, it can resolve a 3D structure in a single algorithmic run using only the dataset of projections and CTF estimations as inputs. Hence, it bypasses many processing steps that are necessary in the usual cryo-EM reconstruction pipeline, which opens new perspectives for reconstruction in SPA.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (30)

Tomographic reconstruction

Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis f

Iterative reconstruction

Iterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques.
For example, in computed tomography an image must be reconstructed from pro

Courant alternatif

Le courant alternatif (qui peut être abrégé par CA) est un courant électrique périodique qui change de sens deux fois par période et qui transporte des quantités d'électricité alternativement égales

Publications associées (73)

Chargement

Chargement

Chargement

In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in the field, assume prior knowledge related to smoothness or sparsity of these images. Recently, they have been outperformed by the second generation algorithms which harness the power of neural networks to learn required statistics from training data. Even more recently, last generation deep-learning-based methods have emerged which require neither training nor training data. This thesis devises algorithms which progress through these generations. It extends these generations to novel formulations and applications while bringing more robustness. In parallel, it also progresses in terms of complexity, from proposing algorithms for problems with 1D data and an exact known forward model to the ones with 4D data and an unknown parametric forward model. We introduce five main contributions. The last three of them propose deep-learning-based latest-generation algorithms that require no prior training. 1) We develop algorithms to solve the continuous-domain formulation of inverse problems with both classical Tikhonov and total-variation regularizations. We formalize the problems, characterize the solution set, and devise numerical approaches to find the solutions. 2) We propose an algorithm that improves upon end-to-end neural-network-based second generation algorithms. In our method, a neural network is first trained as a projector on a training set, and is then plugged in as a projector inside the projected gradient descent (PGD). Since the problem is nonconvex, we relax the PGD to ensure convergence to a local minimum under some constraints. This method outperforms all the previous generation algorithms for Computed Tomography (CT). 3) We develop a novel time-dependent deep-image-prior algorithm for modalities that involve a temporal sequence of images. We parameterize them as the output of an untrained neural network fed with a sequence of latent variables. To impose temporal directionality, the latent variables are assumed to lie on a 1D manifold. The network is then tuned to minimize the data fidelity. We obtain state-of-the-art results in dynamic magnetic resonance imaging (MRI) and even recover intra-frame images. 4) We propose a novel reconstruction paradigm for cryo-electron-microscopy (CryoEM) called CryoGAN. Motivated by generative adversarial networks (GANs), we reconstruct a biomolecule's 3D structure such that its CryoEM measurements resemble the acquired data in a distributional sense. The algorithm is pose-or-likelihood-estimation-free, needs no ab initio, and is proven to have a theoretical guarantee of recovery of the true structure. 5) We extend CryoGAN to reconstruct continuously varying conformations of a structure from heterogeneous data. We parameterize the conformations as the output of a neural network fed with latent variables on a low-dimensional manifold. The method is shown to recover continuous protein conformations and their energy landscape.

Despite being a powerful medical imaging technique which does not emit any ionizing radiation, magnetic resonance imaging (MRI) always had the major problem of long scanning times that can take up to an hour depending on the application. It also requires uncomfortable breath-holds due to the slow acquisition, sedation of children and repeated scans in the cases of degraded image quality due to body motion.
Recent years have seen new image reconstruction techniques that need less amount of acquired data (i.e., accelerated scans) for reconstructing MRI images: parallel imaging and compressed sensing (CS). Although much work has been done on the reconstruction side, there has been relatively less work on experimental design, i.e., which parts of the Fourier domain to acquire during the scan, an essential factor that considerably affects the performance of image reconstructions. The state-of-the-art experimental designs use random subsampling either based on parametric models or heuristical adaptive models. The requirement of extensive parameter tuning and the random nature of the performance render these methods impractical and unreliable for clinical use.
Can we systematically use the data acquired during past MRI scans for the design of accelerated scans with a reliable image quality? This problem is the focus of this thesis which proposes a data-driven scan design approach and training procedures which efficiently and effectively learn the structure inherent in the data, and accordingly, design the scans that directly acquire only the most relevant information during acquisition given an acceleration rate constraint. As a result, this boosts the performance of the existing state-of-the-art compressive sensing techniques on real-world datasets. Moreover, this approach provides strong theoretical guarantees by using tools from statistical learning theory.
The intensive computational training procedures of our approach are made feasible by large-scale implementations on a parallel computing cluster. In return, this approach avoids any dependence on parametric or heuristic models and provides a reliably consistent image reconstruction performance for accelerated scans. Our approach is flexible and capable of giving deterministic scan designs specific to the anatomy, to the acceleration rate in use, to the reconstruction algorithm and the scan settings such as static/dynamic and parallel imaging.
Apart from measurement designs for MRI, this thesis also considers the reconstruction problem. In particular, we focus on the inverse problems that involve a mixture of regularizers in the objective function, exploiting multiple structures at the same time. For these problems, we propose a reliable and systematic optimization framework and illustrate its effectiveness. Finally, in the last part of the thesis, we present a data-driven model and an optimization method for the design of nearly isometric, linear and dimensionality reducing embeddings.

Acoustic tomography aims at recovering the unknown parameters that describe a field of interest by studying the physical characteristics of sound propagating through the considered field. The tomographic approach is appealing in that it is non-invasive and allows to obtain a significantly larger amount of data compared to the classical one-sensor one-measurement setup. It has, however, two major drawbacks which may limit its applicability in a practical setting: the methods by which the tomographic data are acquired and then converted to the field values are computationally intensive and often ill-conditioned. This thesis specifically addresses these two shortcomings by proposing novel acoustic tomography algorithms for signal acquisition and field reconstruction. The first part of our exposition deals with some theoretical aspects of the tomographic sampling problems and associated reconstruction schemes for scalar and vector tomography. We show that the classical time-of-flight measurements are not sufficient for full vector field reconstruction. As a solution, an additional set of measurements is proposed. The main advantage of the proposed set is that it can be directly computed from acoustic measurements. It thus avoids the need for extra measuring devices. We then describe three novel reconstruction methods that are conceptually quite different. The first one is based on quadratic optimization and does not require any a priori information. The second method builds upon the notion of sparsity in order to increase the reconstruction accuracy when little data is available. The third approach views tomographic reconstruction as a parametric estimation problem and solves it using recent sampling results on non-bandlimited signals. The proposed methods are compared and their respective advantages are outlined. The second part of our work is dedicated to the application of the proposed algorithms to three practical problems: breast cancer detection, thermal therapy monitoring, and temperature monitoring in the atmosphere. We address the problem of breast cancer detection by computing a map of sound speed in breast tissue. A noteworthy contribution of this thesis is the development of a signal processing technique that significantly reduces the artifacts that arise in very inhomogeneous and absorbent tissue. Temperature monitoring during thermal therapies is then considered. We show how some of our algorithms allow for an increased spatial resolution and propose ways to reduce the computational complexity. Finally, we demonstrate the feasibility of tomographic temperature monitoring in the atmosphere using a custom-built laboratory-scale experiment. In particular, we discuss various practical aspects of time-of-flight measurement using cheap, off-the-shelf sensing devices.