Publication

Experimental studies of the equilibrium and out-of-equilibrium electronic structure of non-symmorphic topological materials

Publications associées (191)

High-throughput screening of Weyl semimetals

Nicola Marzari, Davide Campi, Davide Grassano

Topological Weyl semimetals represent a novel class of nontrivial materials, where band crossings with linear dispersions take place at generic momenta across reciprocal space. These crossings give rise to low -energy properties akin to those of Weyl fermi ...
College Pk2024

Topological photonic transport in disordered scattering networks

Zhechen Zhang

This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...
EPFL2024

Quantum-mechanical effects in photoluminescence from thin crystalline gold films

Giulia Tagliabue, Fateme Kiani Shahvandi, Alan Richard Bowman, Theodoros Tsoulos

Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its ...
2024

Weyl metallic state induced by helical magnetic order

Henrik Moodysson Rønnow, Jan Hugo Dil, Ivica Zivkovic, Jian Rui Soh, Xupeng Yang

In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi ...
Berlin2024

Nonlinear optical diode effect in a magnetic Weyl semimetal

Philip Johannes Walter Moll, Chunyu Guo, Hao Yang

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...
Nature Portfolio2024

Realization of an atomic quantum Hall system in four dimensions

Qi Liu

Modern condensed matter physics relies on the concept of topology to classify matter, from quantum Hall systems to topological insulators. Engineered systems, benefiting from synthetic dimensions, can potentially give access to topological states predicted ...
Amer Assoc Advancement Science2024

Type-I antiferromagnetic Weyl semimetal InMnTi2

Nicola Marzari, Davide Grassano, Luca Binci

Topological materials have been a main focus of studies in the past decade due to their protected properties that can be exploited for the fabrication of new devices. Among them, Weyl semimetals are a class of topological semimetals with nontrivial linear ...
College Pk2024

Disclination states in nonreciprocal topological networks

Romain Christophe Rémy Fleury, Haoye Qin, Zhechen Zhang, Qiaolu Chen

Recently, nonreciprocal two-dimensional unitary scattering networks have gained considerable interest due to the possibility of obtaining robust edge wave propagation in their anomalous topological insulating phase. However, zero-dimensional states in such ...
2024

Machine-learning the electronic density of states: electronic properties without quantum mechanics

Chiheb Ben Mahmoud

The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
EPFL2023

Ultrafast control of emergent quantum matter probed by electron microscopy

Benoît Guilhem Michel Binh Truc

In the quest for controlling materials' properties, light as an external stimulus has a special place as it can create new states of matter and enable their ultrafast manipulation. In particular, spintronics, an exciting emergent field relying on the elect ...
EPFL2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.