ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Boosting is a general method for training an ensemble of classifiers with a view to improving performance relative to that of a single classifier. While the original AdaBoost algorithm has been defined for classification tasks, the current work examines it ...
Boosting is a general method for training an ensemble of classifiers with a view to improving performance relative to that of a single classifier. While the original AdaBoost algorithm has been defined for classification tasks, the current work examines it ...
We extend the standard boosting procedure to train a two-layer classifier dedicated to handwritten character recognition. The scheme we propose relies on a hidden layer which extracts feature vectors on a fixed number of points of interest, and an output l ...
A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960’s; and it opens a new research area in the science. This paper focuses on the person ...
Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce a model for rhythms based on the distributions of di ...
In this paper, a fast and effective multi-view face tracking algorithm with head pose estimation is introduced. For modeling the face pose we employ a tree of boosted classifiers built using either Haar-like filters or Gauss filters. A first classifier ext ...
By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs d ...
Gradient boosting is a machine learning method, that builds one strong classifier from many weak classifiers. In this work, an algorithm based on gradient boosting is presented, that detects event-related potentials in single electroencephalogram (EEG) tri ...
Decision trees can be used to represent a large number of expert system rules in a compact way. We describe machine learning algorithms for learning decision trees. We have implemented the algorithms, including bagging and boosting techniques. We have depl ...
Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce a model for rhythms based on the distributions of di ...