Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Calcul distribuéUn calcul distribué, ou réparti ou encore partagé, est un calcul ou un traitement réparti sur plusieurs microprocesseurs et plus généralement sur plusieurs unités centrales informatiques, et on parle alors d'architecture distribuée ou de système distribué. Le calcul distribué est souvent réalisé sur des clusters de calcul spécialisés, mais peut aussi être réalisé sur des stations informatiques individuelles à plusieurs cœurs. La distribution d'un calcul est un domaine de recherche des sciences mathématiques et informatiques.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Synapsethumb|400px|Synapse entre deux neurones. La synapse (du grec , « contact, point de jonction », dérivé de , « joindre, connecter ») est une zone de contact fonctionnelle qui s'établit entre deux neurones, ou entre un neurone et une autre cellule (cellules musculaires, récepteurs sensoriels...). Elle assure la conversion d'un potentiel d'action déclenché dans le neurone présynaptique en un signal dans la cellule postsynaptique. On estime, pour certains types cellulaires (par exemple cellule pyramidale, cellule de Purkinje.
Memory cell (computing)The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it. Over the history of computing, different memory cell architectures have been used, including core memory and bubble memory.
Mémoire à changement de phaseLa mémoire à changement de phase, ou PCM pour Phase Change Memory, ou encore PRAM pour Phase-Change RAM, est un type de mémoire non volatile s'appuyant sur la transition de phase de certains matériaux pour le stockage des informations, à l'instar des disques optiques réinscriptibles. Elle est présentée comme mémoire universelle car elle combine la vitesse et l’endurance de la mémoire vive (RAM) et la non-volatilité et le faible coût de la mémoire flash. Les premières PRAM ont été mises en vente en 2012 par Samsung.
MemristorEn électronique, le memristor (ou memristance) est un composant électronique passif. Il a été décrit comme le quatrième composant passif élémentaire, aux côtés du condensateur (ou capacité), du résistor (ou résistance) et de la bobine(ou inductance). Le nom est un mot-valise formé à partir des deux mots anglais memory et resistor. Un memristor stocke efficacement l’information car la valeur de sa résistance électrique change de façon permanente lorsqu’un courant est appliqué.
BurstingBursting, or burst firing, is an extremely diverse general phenomenon of the activation patterns of neurons in the central nervous system and spinal cord where periods of rapid action potential spiking are followed by quiescent periods much longer than typical inter-spike intervals. Bursting is thought to be important in the operation of robust central pattern generators, the transmission of neural codes, and some neuropathologies such as epilepsy.