Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses
Publications associées (115)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the realm of point cloud scene understanding, particularly in indoor scenes, objects are arranged following human habits, resulting in objects of certain semantics being closely positioned and displaying notable inter-object correlations. This can creat ...
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signa ...
The desire and ability to place AI-enabled applications on the edge has grown significantly in recent years. However, the compute-, area-, and power-constrained nature of edge devices are stressed by the needs of the AI-enabled applications, due to a gener ...
The way biological brains carry out advanced yet extremely energy efficient signal processing remains both fascinating and unintelligible. It is known however that at least some areas of the brain perform fast and low-cost processing relying only on a smal ...
Humans and animals constantly adapt to their environment over the course of their life. This thesis seeks to integrate various timescales of adaptation, ranging from the adaptation of synaptic connections between spiking neurons (milliseconds), rapid behav ...
EPFL2023
, , , , , ,
Hybrid perovskites have attracted enormous attention in the next generation resistive switching (RS) memristor for the artificial synapses, owing to their ambipolar charge transport, long diffusion length, and tunable visible bandgap. However, the variable ...
WILEY2023
,
Neuromorphic computing requires electronic systems that can perform massively parallel computational tasks with low energy consumption. Such systems have traditionally been based on complementary metal-oxide-semiconductor circuits, but further advances in ...
Berlin2023
, ,
The dynamics of neuron populations during diverse tasks often evolve on low-dimensional manifolds. However, it remains challenging to discern the contributions of geometry and dynamics for encoding relevant behavioural variables. Here, we introduce an unsu ...
2023
, , ,
We propose a method for adapting neural networks to distribution shifts at test-time. In contrast to training-time robustness mechanisms that attempt to anticipate and counter the shift, we create a closed-loop system and make use of test-time feedback sig ...
Ieee Computer Soc2023
, ,
Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioural data increases, there is growing interest in modelling neural dynamics during adaptive behaviours to probe neural re ...