Publication

Inference methods for the study of interacting biological oscillators in single-cells

Colas Noé Droin
2020
Thèse EPFL
Résumé

Biological oscillators are pervasive in biology, covering all aspects of life from enzyme kinetics reactions to population dynamics. Although their behaviour has been intensively studied in the last decades, the recent advances of high-throughput experimental technologies in the fields of omics and microscopy has called for the development of new analysis methods. Among the many types of models and quantitative analyses, parametric approaches are promising as they enable for a mechanistic or physical explanation of the phenomena under study. In particular, dynamical systems theory seems particularly adapted as the vast majority of oscillators can be modelled through differential equations. Dynamical systems parameters can also be easily opti-mized via maximum likelihood approaches. The validity of the inferred model can then be assessed from the quality of its predictions. We here present three different scientific questions regarding noisy biological oscillators, which are answered using maximum-likelihood inference approaches applied to parametric models.

We first take interest in the characterisation of the influence of the cell-cycle over the circadi-an clock in individual mammalian cells. To this end, we develop a method combining a Hidden Markov Model with an Expectation-Maximization algorithm to infer their coupling from single-cell microscopy traces. We show that this coupling predicts multiple phase-locked states exhib-iting different degrees of robustness against molecular fluctuations inherent to cellular scale bio-logical oscillators.

We then try to understand how the mammalian transcriptome behaves in the liver. Thence, we use single-cell RNA sequencing (scRNA-seq) along with mixed-models to investigate the interplay between gene regulation in space and time. Categorising mRNA expression profiles using mixed-effect models and smFISH validations, we find that many genes in the liver are both zonated and rhythmic, most of them showing multiplicative space-time effects.

Finally, we look more closely at the cell-cycle, as it is one of the main drivers of gene expres-sion cell-to-cell heterogeneity in otherwise homogeneous cell populations. Here, we would like to understand if and how cell-cycle velocity changes depending on the phase of the cycling cells. To that end, we formulate the problem in terms of an autonomous dynamical system and use this to infer consistent dynamics for the cell-cycle from scRNA-seq data.

Phase inference being paramount in all of these three studies, a short technical review on the topic is also provided at the end of this thesis, along with Julia scripts for the main inference methods presented. Various computational tools assisting the understanding of the scientific questions at stake are also presented, including a Python Dash web-app, a D3 widget and many Matplotlib animations and widgets.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (43)
Système dynamique
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Modèle mixte
Un modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Nonlinear mixed-effects model
Nonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.
Afficher plus
Publications associées (59)

Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks

Alfio Quarteroni, Francesco Regazzoni, Stefano Pagani

Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equ ...
Nature Portfolio2024

Nonparametric estimation for SDE with sparsely sampled paths: An FDA perspective

Victor Panaretos, Neda Mohammadi Jouzdani

We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
Amsterdam2023

The elliptical Ornstein-Uhlenbeck process

Sofia Charlotta Olhede

We introduce the elliptical Ornstein-Uhlenbeck (OU) process, which is a generalisation of the well-known univariate OU process to bivariate time series. This process maps out elliptical stochastic oscillations over time in the complex plane, which are obse ...
INT PRESS BOSTON, INC2023
Afficher plus
MOOCs associés (32)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.