Convergence without Convexity: Sampling, Optimization, and Games
Publications associées (83)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose a novel accelerated exact k-means algorithm, which outperforms the current state-of-the-art low-dimensional algorithm in 18 of 22 experiments, running up to 3× faster. We also propose a general improvement of existing state-of-the-art a ...
We consider L1 -TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is nonconvex for circle-valued data. In this paper, we deriv ...
Protection of one's intellectual property is a topic with important technological and legal facets. We provide mechanisms for establishing the ownership of a dataset consisting of multiple objects. The algorithms also preserve important properties of the d ...
In this research, two crucial optimization problems of berth allocation and yard assignment in the context of bulk ports are studied. We discuss how these problems are interrelated and can be combined and solved as a single large scale optimization problem ...
We present a framework based on convex optimization and spectral regularization to perform learning when feature observations are multidimensional arrays (tensors). We give a mathematical characterization of spectral penalties for tensors and analyze a uni ...
We consider the estimation of the acoustic source position in a known room from recordings by a microphone array. We propose an algorithm that does not require the room to be convex, nor a line-of-sight path between the microphone array and the source to b ...
Many natural and man-made signals can be described as having a few degrees of freedom relative to their size due to natural parameterizations or constraints; examples include bandlimited signals, collections of signals observed from multiple viewpoints in ...
We investigate the nonsmooth and nonconvex L1 -Potts functional in discrete and continuous time. We show Γ-convergence of discrete L1 -Potts functionals toward their continuous counterpart and obtain a convergence statement for the corr ...
We consider the problem of learning by demonstration from agents acting in unknown stochastic Markov environments or games. Our aim is to estimate agent preferences in order to construct improved policies for the same task that the agents are trying to sol ...
We investigate the nonsmooth and nonconvex L-1-Potts functional in discrete and continuous time. We show Gamma-convergence of discrete L-1-Potts functionals toward their continuous counterpart and obtain a convergence statement for the corresponding minimi ...