Problème algorithmiqueUn problème algorithmique est, en informatique théorique, un objet mathématique qui représente une question ou un ensemble de questions auxquelles un ordinateur devrait être en mesure de répondre. Le plus souvent, ces problèmes sont de la forme : étant donné un objet (l'instance), effectuer une certaine action ou répondre à telle question. Par exemple, le problème de la factorisation est le problème suivant : étant donné un nombre entier, trouver un facteur premier de cet entier.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Problème du voyageur de commercevignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.