ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Analyse discriminante linéaireEn statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Observational learningObservational learning is learning that occurs through observing the behavior of others. It is a form of social learning which takes various forms, based on various processes. In humans, this form of learning seems to not need reinforcement to occur, but instead, requires a social model such as a parent, sibling, friend, or teacher with surroundings. Particularly in childhood, a model is someone of authority or higher status in an environment.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Apprentissage collaboratifDans le domaine de l'apprentissage et de la gestion communautaire des savoirs, la collaboration repose sur un but commun, chaque membre réalisant une part de la tâche globale, en puisant dans les ressources de l'environnement (mémoire organisationnelle), dans ses ressources propres (compétence individuelle) et dans celles du groupe : on parle alors de communauté de pratique voire de communauté d'apprentissage et d'apprentissage collaboratif.
Filtrage collaboratifvignette|Illustration d'un filtrage collaboratif où un système de recommandation doit prédire l'évaluation d'un objet par un utilisateur en se basant sur les évaluations existantes. Le filtrage collaboratif (de l’anglais : en) regroupe l'ensemble des méthodes qui visent à construire des systèmes de recommandation utilisant les opinions et évaluations d'un groupe pour aider l'individu. Il existe trois principaux axes de recherche dans ce domaine, dépendant chacun des données recueillies sur les utilisateurs du système : le filtrage collaboratif actif ; le filtrage collaboratif passif ; le filtrage basé sur le contenu.
CollaborationLa collaboration est l'acte de travailler ou de réfléchir ensemble pour atteindre un objectif. Dans son sens commun, la collaboration est un processus par lequel deux ou plusieurs personnes ou organisations s’associent pour effectuer un travail intellectuel suivant des objectifs communs. Des méthodes structurées de collaboration encouragent l'introspection de comportements et communication. Ces méthodes ont pour objectif spécifique l'augmentation du taux de réussite des équipes quand elles se livrent à la résolution de problèmes en collaboration.