Publication

Brain micro-vasculature imaging: An unsupervised deep learning algorithm for segmenting mouse brain volume probed by high-resolution phase-contrast X-ray tomography

Résumé

High-throughput synchrotron-based tomographic microscopy at third generation light sources allows to probe cm-sized samples at micrometer-resolution. In this work, we present an approach to image a full mouse brain. With Indian-ink as a contrast agent, it was possible to obtain 3D distribution of microvessels while a computational framework automatically extracted the morphological and geometrical embedding of the putative vascular systems. Results demonstrate the potentiality of the proposed methodology to visualize and quantify in 3D details of the brain tissue with an image quality and resolution previously unachievable.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Produit de contraste
En , un produit (ou agent) de contraste est une substance qui augmente artificiellement le contraste permettant de visualiser une structure anatomique (par exemple, un organe) ou pathologique (par exemple, une tumeur) naturellement peu ou pas contrastée, et que l'on aurait donc du mal à distinguer des tissus voisins.
Radiocontrast agent
Radiocontrast agents are substances used to enhance the visibility of internal structures in X-ray-based imaging techniques such as computed tomography (contrast CT), projectional radiography, and fluoroscopy. Radiocontrast agents are typically iodine, or more rarely barium sulfate. The contrast agents absorb external X-rays, resulting in decreased exposure on the X-ray detector. This is different from radiopharmaceuticals used in nuclear medicine which emit radiation.
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Afficher plus
Publications associées (40)

Advancing Self-Supervised Deep Learning for 3D Scene Understanding

Seyed Mohammad Mahdi Johari

Recent advancements in deep learning have revolutionized 3D computer vision, enabling the extraction of intricate 3D information from 2D images and video sequences. This thesis explores the application of deep learning in three crucial challenges of 3D com ...
EPFL2024

Deep Learning for 3D Surface Modelling and Reconstruction

Benoît Alain René Guillard

In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
EPFL2023

NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways

Willem Anna Mark Wybo, Bernd Albert Illing, Matthias Chinyen Tsai, Walter Senn

While sensory representations in the brain depend on context, it remains unclear how such modulations are implemented at the biophysical level, and how processing layers further in the hierarchy can extract useful features for each possible contex-tual sta ...
Washington2023
Afficher plus
MOOCs associés (25)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Afficher plus