Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-missin ...
AMER CHEMICAL SOC2021
, , ,
We explore the photoluminescence (PL) properties of hexagonal boron nitride (h-BN) quantum emitters embedded within atomically thin graphene/h-BN heterostructures fabricated by mechanical transfer. Stable light emission could be observed from h-BN emitters ...
AMER INST PHYSICS2019
Amplified spontaneous emission (ASE) threshold in CsPbBr3 quantum dot films is systematically reduced by introducing high quality TiO2 compact layer grown by atomic-layer deposition. Uniform and pinhole-free TiO2 films of thickness 10, 20 and 50 nm are use ...
Fluorescent nanoparticles with optically robust luminescence are imperative to applications in imaging and labeling. Here we demonstrate that hexagonal boron nitride (hBN) nanoparticles can be reliably produced using a scalable cryogenic exfoliation techni ...
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lac ...
Graphene nanoribbons (GNRs) - one-dimensional strips of graphene - share many of the exciting properties of graphene, such as ballistic transport over micron dimensions, strength and flexibility, but more importantly, they exhibit a tunable band gap that d ...
Since their discovery, graphene and other 2D materials have become a subject of intense research in condensed matter physics. Especially the vast possibilities of combining those materials into heterostructures are promising for the discovery of novel phys ...
Nowadays, the interest in 2D materials has gone far beyond graphene. Specially, monolayers of transition metal dichalcogenides (TMDs) offer a broad spectrum of electronic and optical properties, and show the potential to revolutionize the electronics indus ...
The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We present here an implementat ...