Electron flux and pressure dynamic in the LHC vacuum pilot sector as a function of beam parameters and beam pipe properties
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The Large Hadron Collider (LHC) is the world’s largest and most powerful particle collider. Its main objectives are to explore the validity of the standard model of particle physics and to look for new physics beyond it, at unprecedented collision energies ...
During the beam commissioning of the Large Hadron Collider (LHC) [LHC Design Report No. CERN-2004-003-V-1, 2004 [http://cds.cern.ch/record/782076?ln=en]; O. Bruning, H. Burkhardt, and S. Myers, Prog. Part. Nucl. Phys. 67, 705 (2012)] with 150, 75, 50, and ...
In this thesis work we investigate the heat transfer through the electrical insulation of superconducting cables cooled by super fluid helium. The cable insulation constitutes the most severe barrier for heat extraction from the superconducting magnets of ...
A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deteriorat ...
The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, suf ...
The next generation of superconducting magnets for the interaction regions of particle colliders, as well as for fast cycled accelerators, will be confronted with large heat loads. In order to improve the evacuation of heat from the Nb-Ti coil towards He-I ...
The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Co ...
LHCb is one of the four main experiments hosted at the Large Hadron Collider (LHC) at CERN. The LHC first started in September 2008 and, after a one-year hiccough, restarted in November 2009. In the course of three weeks, the HEP community witnessed the fi ...
The Large Hadron Collider (LHC) at CERN near Geneva is an accelerator designed to collide protons at a centre-of-mass energy of √s = 14 TeV. It is operational since November 2009 and has delivered collisions up to an energy of √s = 7 TeV in 2010. The LHCb ...
The betatron squeeze is a critical operational phase for the LHC because it is carried out at top energy, with the maximum stored energy and with reduced aperture mar- gins in the superconduting triplets. A stable operation with minimum beam losses must be ...