Publication

Versatile shaping of optical frequency combs and applications

Jianqi Hu
2021
Thèse EPFL
Résumé

Optical frequency combs are a series of phase-locked and equidistant laser lines in the spectral domain. In the time domain, they correspond to periodic pulse trains by the Fourier relation. The ability to shape optical combs and pulse trains is pivotal to many applications in optical communications and microwave photonics. For communication purposes, the information can be multiplexed in either time or frequency, by associating the data symbols to the comb lines or optical pulses. In particular, shaping optical pulses into sinc profile is of special interest, as it achieves high spectral efficiency when multiplexed. In regards to microwave photonics, frequency combs also have emerged as useful tools for processing radiofrequency (RF) signals in parallel. Comb-based RF photonic filter is one of the examples. Optical combs combined with dispersive propagation could construct filtering functions in the RF domain. Additionally, the shaping of comb spectra enables reconfiguration of the synthesized RF photonic filters. The thesis presents results on various shaping techniques for the generation and applications of optical frequency combs. Both electro-optic combs and integrated microcombs are explored in the study, while their pulse shaping takes place either in the generation stage or externally. The first part of the thesis deals with optical sinc pulse shaping. A simple and flexible sinc pulse generator is demonstrated based on a single electro-optic modulator. Rectangular spectra of optical sinc pulses are harnessed to shape RF filters with sinc responses. Moreover, the method of sinc pulse shaping can fulfill the add-drop functionalities for superchannels multiplexed from sinc pulses. In the second part, temporal Talbot shaping of frequency combs is addressed. The temporal Talbot effect multiplies the repetition-rates of optical pulse trains in time. A novel temporal Talbot multiplier is demonstrated in a conventional optical tapped delay line structure. Furthermore, such shaping concept is extended for the demonstration of azimuthal Talbot effect. When the orbital angular momentum modes are superimposed with Talbot phases, the light petal is self-imaged in the azimuthal angle. Lastly, the third part exploits the internal shaping of soliton microcombs for the use in RF photonic filters. Versatile soliton states and thereby various microcomb spectra, are generated in a microresonator on demand. Such optical spectra could reconfigure their corresponding RF filters. Among others, perfect soliton crystals and two-soliton states are utilized, which respectively divide and translate their filter passband frequencies.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Peigne de fréquences optiques
vignette|Schéma représentant les caractéristiques du spectre associé à un train d'impulsions à modes bloqués, c'est-à-dire un peigne de fréquences. En pointillés rouge est représenté l'enveloppe du spectre. En bleu est représenté les composantes du spectre (les dents du peigne).|300x300px Un peigne de fréquences est la structure spectrale d'une source optique spécifique. Celle-ci est composée d'une succession de fréquences discrètes régulièrement espacées, aussi appelées les raies ou « dents » du peigne.
Pulse shaping
In electronics and telecommunications, pulse shaping is the process of changing a transmitted pulses' waveform to optimize the signal for its intended purpose or the communication channel. This is often done by limiting the bandwidth of the transmission and filtering the pulses to control intersymbol interference. Pulse shaping is particularly important in RF communication for fitting the signal within a certain frequency band and is typically applied after line coding and modulation.
Femtosecond pulse shaping
In optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses. Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc.
Afficher plus
Publications associées (64)

Single-shot Kramers-Kronig complex orbital angular momentum spectrum retrieval

Camille Sophie Brès, Jianqi Hu, Yujie Chen

Orbital angular momentum (OAM) spectrum diagnosis is a fundamental building block for diverse OAM-based systems. Among others, the simple on-axis interferometric measurement can retrieve the amplitude and phase information of complex OAM spectra in a few s ...
SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS2023

Editorial Foreword to The ECOC 2022 Special Issue

Niels Quack, Hans Georg Limberger, Rachel Grange, Christian Bosshard

The European Conference on Optical Communications (ECOC) is one of the leading conferences in the field of optical communications and its related topics. The 48th edition took place from 18th-22nd September 2022 in Basel, Switzerland. The conference attrac ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Tunable acousto-optic optical frequency combs

Andrey Voloshin

Examination of various issues related to the generation and application of optical frequency combs (OFCs) is an important branch of modern optoelectronics. Some of the proposed OFC generation methods apply acousto-optic (AO) devices. The AO devices are use ...
Optica Publishing Group2022
Afficher plus
MOOCs associés (13)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.