Novak Kaluderovic
Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.This thesis treats two such algorithms and provides theoretical and practical attacks against them.The first protocol is the generalised Legendre pseudorandom function - a random bit generator computed as the Legendre symbol of the evaluation of a secret polynomial at an element of a finite field. We introduce a new point of view on the protocol by analysing the action of the group of Möbius transformations on the set of secret keys (secret polynomials).We provide a key extraction attack by creating a table which is cubic in the number of the function queries, an improvement over the previous algorithms which only provided a quadratic yield. Furthermore we provide an ever stronger attack for a new set of particularly weak keys.The second protocol that we cover is SIKE - supersingular isogeny key encapsulation.In 2017 the American National Institute of Standards and Technology (NIST) opened a call for standardisation of post-quantum cryptographic algorithms. One of the candidates, currently listed as an alternative key encapsulation candidate in the third round of the standardisation process, is SIKE.We provide three practical side-channel attacks on the 32-bit ARM Cortex-M4 implementation of SIKE.The first attack targets the elliptic curve scalar multiplication, implemented as a three-point ladder in SIKE. The lack of coordinate randomisation is observed, and used to attack the ladder by means of a differential power analysis algorithm.This allows us to extract the full secret key of the target party with only one power trace.The second attack assumes coordinate randomisation is implemented and provides a zero-value attack - the target party is forced to compute the field element zero, which cannot be protected by randomisation. In particular we target both the three-point ladder and isogeny computation in two separate attacks by providing maliciously generated public keys made of elliptic curve points of irregular order.We show that an order-checking countermeasure is effective, but comes at a price of 10% computational overhead. Furthermore we show how to modify the implementation so that it can be protected from all zero-value attacks, i.e., a zero-value is never computed during the execution of the algorithm.Finally, the last attack targets a point swapping procedure which is a subroutine of the three-point ladder. The attack successfully extracts the full secret key with only one power trace even if the implementation is protected with coordinate randomisation or order-checking. We provide an effective countermeasure --- an improved point swapping algorithm which protects the implementation from our attack.
EPFL2022