Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs
Publications associées (52)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrat ...
Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to ...
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
In this report we study and compare particular integration methods to solve ordinary differential equations, which are separable in solvable parts. The main source for this work is the article of Blanes and Casas: "On the necessity of negative coefficient ...
Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff ordinary differential equations. Making use of special properties of Chebyshev-like polynomials, these methods have favorable stability properties compared to standar ...
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...
The numerical analysis of a dynamic constrained optimization problem is presented. It consists of a global minimization problem that is coupled with a system of ordinary differential equations. The activation and the deactivation of inequality constraints ...
A novel method is presented for the systematic identification of the minimum requirements regarding mathematical pre-treatment, a priori information, or experimental design, in order to allow optimising rate constants and pure component spectra associated ...
The modeling of a system composed by a gas phase and organic aerosol particles, and its numerical resolution are studied. The gas-aerosol system is modeled by ordinary differential equations coupled with a mixed-constrained optimization problem. This coupl ...