Surprise-based model estimation in reinforcement learning: algorithms and brain signatures
Publications associées (94)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does n ...
Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation uni ...
This letter, addressed to a creature taking the form of a human chimera gathering the thoughts and knowledge of people who inspire and accompany us, recounts the experiences, affects and issues related to our first semester of teaching the course named DRA ...
Model-free Reinforcement Learning (RL) generally suffers from poor sample complexity, mostly due to the need to exhaustively explore the state-action space to find well-performing policies. On the other hand, we postulate that expert knowledge of the syste ...
This doctoral thesis focuses on a particular aspect of architectural learning as embodied cognition by studying, from a multidisciplinary approach, the creative processes and design actions that accompany the conception and construction of space. Due to th ...
USP- Universidad San Pablo CEU, Madrid, Spain.2023
The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the characte ...
Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive method for studying white matter tracts of the brain. However, accurate microstructure estimation with fiber orientation distribution (FOD) using existing computational methods requires ...
This paper proposes a safe reinforcement learning algorithm for generation bidding decisions and unit maintenance scheduling in a competitive electricity market environment. In this problem, each unit aims to find a bidding strategy that maximizes its reve ...