Lifelong Machine Learning with Data Efficiency and Knowledge Retention
Publications associées (208)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Hyperdimensional (HD) computing is a novel approach to machine learning inspired by neuroscience, which uses vectors in a hyper-dimensional space to represent data and models. This approach has gained significant interest in recent years with applications ...
In this dissertation, we propose multiple methods to improve transfer learning for pretrained language models (PLMs). Broadly, transfer learning is a powerful technique in natural language processing, where a language model is first pre-trained on a data-r ...
Incomplete labels are common in multi-task learning for biomedical applications due to several practical difficulties, e.g., expensive annotation efforts by experts, limit of data collection, different sources of data. A naive approach to enable joint lear ...
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions and arising from possibly different distributions. In the context of social learning ...
Over the years, clinical institutes accumulated large amounts of digital slides from resected tissue specimens. These digital images, called whole slide images (WSIs), are high-resolution tissue snapshots that depict the complex interaction of cells at the ...
Discovering new materials is essential but challenging, time-consuming, and expensive.In many cases, simulations can be useful for estimating material properties. For many of the most interesting properties, however, simulations are infeasible because of p ...
Metal-based Laser Powder Bed Fusion (LPBF) has made fabricating intricate components easier. Yet, assessing part quality is inefficient, relying on costly Computed Tomography (CT) scans or time-consuming destructive tests. Also, intermittent inspection of ...
There is a strong incentive to develop computational pathology models to i) ease the burden of tissue typology annotation from whole slide histological images; ii) transfer knowledge, e.g., tissue class separability from the withheld source domain to the d ...
Crop maps are crucial for agricultural monitoring and food management and can additionally support domain-specific applications, such as setting cold supply chain infrastructure in developing countries. Machine learning (ML) models, combined with freely-av ...