Phase retrieval in high dimensions: Statistical and computational phase transitions
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research. On the one hand, parity-time- (PT-) and anti-PT-symmetric physics have gained ever-growing interest, due to the existence of non-Hermitian sp ...
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existin ...
By taking inspiration from the backflow transformation for correlated systems, we introduce a tensor network Ansatz which extends the well-established matrix product state representation of a quantum many-body wave function. This structure provides enough ...
Randomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of x(T) Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number ...
The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex eigenvalues (poles and ...
We consider the phase retrieval problem, in which the observer wishes to recover a n-dimensional real or complex signal X⋆ from the (possibly noisy) observation of |ΦX⋆|, in which Φ is a matrix of size m×n. We consider a \emph{high-dimensional} setting whe ...
This thesis focuses on two kinds of statistical inference problems in signal processing and data science. The first problem is the estimation of a structured informative tensor from the observation of a noisy tensor in which it is buried. The structure com ...
We revisit the statistical mechanics of charge fluctuations in capacitors. In constant-potential classical molecular simulations, the atomic charges of electrode atoms are treated as additional degrees of freedom which evolve in time so as to satisfy the c ...