Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
LaFeO3 (LFO) is recognized as a candidate material for solar water oxidation, but its photoelectrochemical response remains modest and stagnant. With the aim of advancing LFO photoanodes for the oxygen evolution reaction (OER), here, a nanorod array-type electrode combined with defect and surface engineering protocols has been demonstrated, delivering a benchmark performance of 0.4 mA cm−2 at 1.23 V vs. RHE with an onset potential below 0.55 V vs. RHE. It was found that oxygen defects activated the surface towards OER, while NiFeOx coating suppressed surface recombination. It was discovered, however, that the performance was limited by rapid (nanosecond timescale) bulk recombination, as well as the ultrashort hole diffusion length (