**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Coherent spin–photon coupling using a resonant exchange qubit

Résumé

Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit–photon coupling strength on the tunable electric dipole moment of the qubit using the ‘AC Stark’ effect. Our demonstration of strong qubit–photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (17)

Chargement

Chargement

Chargement

Concepts associés (14)

Informatique quantique

L'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que d

Qubit

En informatique quantique, un qubit ou qu-bit (quantum + bit ; prononcé ), parfois écrit qbit, est un système quantique à deux niveaux, qui représente la plus petite unité de stockage d'information q

Information quantique

La théorie de l'information quantique, parfois abrégée simplement en information quantique, est un développement de la théorie de l'information de Claude Shannon exploitant les propriétés de la mécani

Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot charge qubit strongly coupled to a frequency-tunable high-impedance resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state-dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation, and Hahn-echo measurements and find significantly reduced decoherence rates down to γ2/2π∼3 MHz corresponding to coherence times of up to T2∼50 ns for charge states in gate-defined quantum dot qubits. We realize Rabi π pulses of width down to σ∼0.25 ns.

2019Spin qubits hosted in silicon (Si) quantum dots (QD) are attractive due to their exceptionally long coherence times and compatibility with the silicon transistor platform. To achieve electrical control of spins for qubit scalability, recent experiments have utilized gradient magnetic fields from integrated micro-magnets to produce an extrinsic coupling between spin and charge, thereby electrically driving electron spin resonance (ESR). However, spins in silicon QDs experience a complex interplay between spin, charge, and valley degrees of freedom, influenced by the atomic scale details of the confining interface. Here, we report experimental observation of a valley dependent anisotropic spin splitting in a Si QD with an integrated micro-magnet and an external magnetic field. We show by atomistic calculations that the spin-orbit interaction (SOI), which is often ignored in bulk silicon, plays a major role in the measured anisotropy. Moreover, inhomogeneities such as interface steps strongly affect the spin splittings and their valley dependence. This atomic-scale understanding of the intrinsic and extrinsic factors controlling the valley dependent spin properties is a key requirement for successful manipulation of quantum information in Si QDs.

2018The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the classic computers could never address because of the exponential scaling, while quantum sensing exploits the ability to address single quantum states to realize ultra-sensitive and precise detectors. Defect centers in semiconductors play a primary role in these fields. The possibility to store information in the spin of their ground state, manipulate it through microwaves, and read it optically allows to use them as qubits. In addition, the very sharp dependence of their properties on temperature, strain and magnetic fields makes them very promising quantum sensors. In this Thesis we aim at contributing to the progress of quantum technologies both at the hardware and software level. From a hardware point of view, we study a key property of defect centers in semiconductors, the phonon-assisted luminescence, which can be measured to perform the readout of the information stored in a quantum bit, or to detect temperature variations. We predict the luminescence and study the exciton-phonon couplings within a rigorous many-body perturbation theory framework,an analysis that has never been performed for defect centers.In particular, we study the optical emission of the negatively-charged boron vacancy in 2D hexagonal boron nitride, which currently stands out among defect centers in 2D materials thanks to its promise for applications in quantum information and quantum sensing. We show that phonons are responsible for the observed luminescence, which otherwise would be dark due to symmetry. We also show that the symmetry breaking induced by the static Jahn-Teller effect is not able to describe the presence of the experimentally observed peak at 1.5 eV.The knowledge of the coupling between electrons and phonons is fundamental for the accurate prediction of all the features of the photoluminescence spectrum. However, the large number of atoms in a defect supercell hinders the possibility use density functional perturbation theory to study this coupling. In this work we present a finite-differences technique to calculate the electron-phonon matrix elements, which exploits the symmetries of the defect in such a way to use the very same set of displacement needed for the calculation of phonons. The computation of electron-phonon coupling thus becomes a simple post-processing of the finite-differences phonons calculation. On the quantum software side, we propose an improved quantum algorithm to calculate the Green's function through real-time propagation, and use it to compute the retarded Green's function for the 2-, 3- and 4-site Hubbard models. This novel protocol significantly reduces the number of controlled operations when compared to those previously suggested in literature. Such reduction is quite remarkable when considering the 2-site Hubbard model, for which we show that it is possible to obtain the exact time propagation of the $\ket{N\pm 1}$ states by exponentiating one single Pauli component of the Hamiltonian, allowing us to perform the calculations on an actual superconducting quantum processor.