Valley dependent anisotropic spin splitting in silicon quantum dots
Publications associées (44)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions(1). In recent years, there have been notable achievements in detecting(2) and coherently controlling(3-7) indivi ...
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magn ...
Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We report for the first time the experimental realization of single electron spin rotations in ...
We present an experimental study and develop a group theoretical analysis of the Zeeman effect on excitons in pyramidal semiconductor quantum dots possessing the symmetries of the C3v point group. The magnetic field dependence of the emission pattern origi ...
We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas–van-Alphen-type oscillations in the magnetization M(B) f ...
The electron spin in a silicon-based quantum dot can be controlled electrically for as long as several tens of microseconds, which improves the prospects for quantum information processing based on this type of quantum dot. ...
We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the inter ...
We report magnetic and thermodynamic properties of a 4d1 (Mo5+) magnetic insulator MoOPO4 single crystal, which realizes a J1−J2 Heisenberg spin-1/2 model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which ...
This thesis is dedicated to the discovery and progressive study of quantum emitters embedded in the shell of coaxial gallium arsenide/ aluminum gallium arsenide nanowires. The bottom-up core/shell nanowires were grown in a molecular beam epitaxy machine. D ...
BiCu2PO6 is a frustrated two-leg spin-ladder compound with a spin gap that can be closed with a magnetic field of approximately 20 T. This quantum phase transition and its related phase diagram as a function of magnetic field and temperature (H, T) are inv ...